Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Am Chem Soc ; 146(11): 7178-7184, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466344

RESUMO

In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.

2.
Angew Chem Int Ed Engl ; 63(6): e202313273, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37906439

RESUMO

The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants. We report herein an unprecedented electrochemical strategy for alkene azidocyanation that is compatible with both alkyl and aryl alkenes. This is achieved by harnessing the finely-tuned anodic electron transfer and the strategic selection of copper/ligand complexes. The reactions of aryl alkenes were rendered enantioselective by employing a chiral ligand. Crucially, the mild conditions and well-regulated electrochemical process assure exceptional tolerance for various functional groups and substrate compatibility with both terminal and internal alkyl alkenes.

3.
J Am Chem Soc ; 145(34): 18753-18759, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581933

RESUMO

The asymmetric difunctionalization of alkenes, a method transforming readily accessible alkenes into enantioenriched chiral structures of high value, has long been a focal point of organic synthesis. Despite tremendous efforts in this domain, it remains a considerable challenge to devise enantioselective oxidative dicarbofunctionalization of alkenes, even though these transformations can utilize stable and unfunctionalized functional group donors. In this context, we report herein a photoelectrocatalytic method for the enantioselective heteroarylcyanation of aryl alkenes, which employs unfunctionalized heteroarenes through C-H functionalization. The photoelectrochemical asymmetric catalysis (PEAC) method combines photoredox catalysis and asymmetric electrocatalysis to facilitate the formation of two C-C bonds operating via hydrogen (H2) evolution and obviating the need for external chemical oxidants.

4.
Angew Chem Int Ed Engl ; 62(40): e202310138, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37590086

RESUMO

The selective oxygenation of ubiquitous C(sp3 )-H bonds remains a highly sought-after method in both academia and the chemical industry for constructing functionalized organic molecules. However, it is extremely challenging to selectively oxidize a certain C(sp3 )-H bond to afford alcohols due to the presence of multiple C(sp3 )-H bonds with similar strength and steric environment in organic molecules, and the alcohol products being prone to further oxidation. Herein, we present a practical and cost-efficient electrochemical method for the highly selective monooxygenation of benzylic C(sp3 )-H bonds using continuous flow reactors. The electrochemical reactions produce trifluoroacetate esters that are resistant to further oxidation but undergo facile hydrolysis during aqueous workup to form benzylic alcohols. The method exhibits a broad scope and exceptional site selectivity and requires no catalysts or chemical oxidants. Furthermore, the electrochemical method demonstrates excellent scalability by producing 115 g of one of the alcohol products. The high site selectivity of the electrochemical method originates from its unique mechanism to cleave benzylic C(sp3 )-H bonds through sequential electron/proton transfer, rather than the commonly employed hydrogen atom transfer (HAT).

5.
J Am Chem Soc ; 144(27): 11980-11985, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35772000

RESUMO

The 1,2-diamine motif is prevalent in natural products, small-molecule pharmaceuticals, and catalysts for asymmetric synthesis. Transition metal catalyzed alkene diazidation has evolved to be an attractive strategy to access vicinal primary diamines but remains challenging, especially for practical applications, due to the restriction to a certain type of olefins, the frequent use of chemical oxidants, and the requirement for high loadings of metal catalysts (1 mol % or above). Herein we report a scalable Cu-electrocatalytic alkene diazidation reaction with 0.02 mol % (200 ppm) of copper(II) acetylacetonate as the precatalyst without exogenous ligands. In addition to its use of low catalyst loading, the electrocatalytic method is scalable, compatible with a broad range of functional groups, and applicable to the diazidation of α,ß-unsaturated carbonyl compounds and mono-, di-, tri-, and tetrasubstituted unactivated alkenes.


Assuntos
Alcenos , Diaminas , Alcenos/química , Catálise , Cobre/química , Diaminas/química , Ligantes
6.
J Am Chem Soc ; 144(5): 2343-2350, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35102740

RESUMO

Cyclopropane is a prevalent structural unit in natural products and bioactive compounds. While the transition metal-catalyzed alkene cyclopropanation of functionalized compounds such as α-diazocarbonyl derivatives has been well established and provides straightforward access to cyclopropanes, cyclopropanation directly from the more stable and simpler methylene compounds has remained an unsolved challenge despite the highly desirable benefits of minimal prefunctionalization and increased operational safety. Herein we report an electrocatalytic strategy for the cyclopropanation of active methylene compounds, employing an organic catalyst. The method shows a broad substrate scope and excellent scalability, requires no metal catalyst or external chemical oxidant, and provides convenient access to several types of cyclopropane-fused heterocyclic and carbocyclic compounds. Mechanistic investigations suggest that the reactions proceed through a radical-polar crossover process to form the two new carbon-carbon bonds in the nascent cyclopropane ring.

7.
J Am Chem Soc ; 144(44): 20201-20206, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315651

RESUMO

The development of efficient and sustainable methods for decarboxylative transformations is of great importance due to the ease of availability and nontoxicity of carboxylic acids. Despite tremendous efforts in this area, it remains challenging to develop enantioselective transformations direct from carboxylic acids. Herein we disclose a photoelectrocatalytic method for the direct and enantioselective decarboxylative cyanation. The photoelectrochemical reactions convert carboxylic acids to enantioenriched nitriles by employing cerium/copper relay catalysis with a cerium salt for catalytic decarboxylation and a chiral copper complex for stereoselective C-CN formation.


Assuntos
Cério , Cobre , Estereoisomerismo , Catálise , Ácidos Carboxílicos
8.
Angew Chem Int Ed Engl ; 61(14): e202115954, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35129253

RESUMO

The direct functionalization of allylic C-H bonds with nucleophiles minimizes pre-functionalization and converts inexpensive, abundantly available materials to value-added alkenyl-substituted products but remains challenging. Here we report an electrocatalytic allylic C-H alkylation reaction with carbon nucleophiles employing an easily available cobalt-salen complex as the molecular catalyst. These C(sp3 )-H/C(sp3 )-H cross-coupling reactions proceed through H2 evolution and require no external chemical oxidants. Importantly, the mild conditions and unique electrocatalytic radical process ensure excellent functional group tolerance and substrate compatibility with both linear and branched terminal alkenes. The synthetic utility of the electrochemical method is highlighted by its scalability (up to 200 mmol scale) under low loading of electrolyte (down to 0.05 equiv) and its successful application in the late-stage functionalization of complex structures.

9.
Chem Rec ; 21(9): 2306-2319, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33734572

RESUMO

Organic radicals are versatile synthetic intermediates that provide reactivities and selectivities complementary to ionic species. Despite its long history, electrochemically driven radical reactions remain limited in scope. In the past few years, there have been dramatic increase in research activity in organic electrochemistry. We have been developing electrochemical and electrophotocatalytic methods for the generation and synthetic utilization of organic radicals. In our studies, various radical species such as alkene and arene radical cations and carbon- and heteroatom-centered radicals are generated from readily available precursors through direct electrolysis, molecular electrocatalysis or molecular electrophotocatalysis. These radical species undergo various inter- and intramolecular oxidative transformations to rapidly increase molecular complexity. The simultaneous occurrence of anodic oxidation and cathodic proton reduction allows the oxidative reactions to proceed through H2 evolution without external chemical oxidants.

10.
J Org Chem ; 86(22): 16001-16007, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34314192

RESUMO

Indole is prevalent in bioactive compounds and natural products. The development of efficient and sustainable methods to access this privileged structural scaffold has been a long-standing interest of synthetic chemists. Herein, we report an electrocatalytic method for the synthesis of indoles through dehydrogenative cyclization of 2-vinylanilides. The reactions employ an organic redox catalyst and do not require any external chemical oxidant, providing speedy and efficient access to 3-substituted and 2,3-disubstituted indoles.


Assuntos
Produtos Biológicos , Indóis , Catálise , Ciclização
11.
Org Biomol Chem ; 19(40): 8789-8793, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34585716

RESUMO

The development of electrocatalytic synthetic methods hinges on efficient molecular catalysts. Triarylamines are well-known redox catalysts because of the good stability of their corresponding amine radical cations. Herein we show that tris(4-(tert-butyl)phenyl)amine decomposes unexpectedly during electrolysis in MeOH/THF to afford a tetraarylhydrazine, 1,1,2,2-tetrakis(4-(tert-butyl)phenyl)hydrazine. In addition, we have applied this tetraarylhydrazine, which is either preprepared or formed in situ from tris(4-(tert-butyl)phenyl)amine, as an electrocatalyst for the synthesis of imidazopyridines and related N-heteroaromatic compounds through intramolecular [3 + 2] annulation. This metal-free electrocatalytic method provides straightforward access to the N-heteroaromatic compounds from readily available materials without the need for external chemical oxidants.

12.
Angew Chem Int Ed Engl ; 60(20): 11237-11241, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33666312

RESUMO

The development of efficient and sustainable methods to access saturated N-heterocycles is of great importance because of the prevalence of these structures in natural products and bioactive compounds. Pd-catalyzed aza-Wacker type cyclization is a powerful method and provides access to N-heterocycles bearing an alkene moiety available for further synthetic manipulations from readily available materials. Herein we disclose a catalyst- and reagent-free formal aza-Wacker type cyclization reaction for the synthesis of functionalized saturated N-heterocycles. Key to the success is to conduct the reactions in a continuous-flow electrochemical reactor without adding supporting electrolyte or additives. The reactions are characterized by broad tolerance of di-, tri- and tetrasubstituted alkenes.

13.
Angew Chem Int Ed Engl ; 60(6): 2943-2947, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33078880

RESUMO

C-H/N-H cross-coupling is an ideal strategy to synthesize various amines but remains challenging owing to the requirement for sacrificial chemical oxidants and the difficulty in controlling the regio- and chemo-selectivity. Herein we report a site-selective electrochemical amination reaction that can convert benzylic C-H bonds into C-N linkages via H2 evolution without need for external oxidants or metal catalysts. The synthetic strategy involves anodic cleavage of benzylic C-H to form a carbocation intermediate, which is then trapped with an amine nucleophile leading to C-N bond formation. Key to the success is to include HFIP as a co-solvent to modulate the oxidation potentials of the alkylbenzene substrate and the aminated product to avoid overoxidation of the latter.

14.
Beilstein J Org Chem ; 17: 2650-2656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795802

RESUMO

Electrocatalytic dehydrogenative C(sp3)-H/C(sp)-H cross-coupling of tetrahydroisoquinolines with terminal alkynes has been achieved in a continuous-flow microreactor through 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)/copper relay catalysis. The reaction is easily scalable and requires low concentration of supporting electrolyte and no external chemical oxidants or ligands, providing straightforward and sustainable access to 2-functionalized tetrahydroisoquinolines.

15.
Acc Chem Res ; 52(12): 3339-3350, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774646

RESUMO

N-centered radicals are versatile reaction intermediates that can react with various π systems to construct C-N bonds. Current methods for generating N-centered radicals usually involve the cleavage of an N-heteroatom bond; however, similar strategies that are applicable to N-H bonds prove to be more challenging to develop and therefore are attracting increasing attention. In this Account, we summarize our recent efforts in the development of electrochemical methods for the generation and synthetic utilization of N-centered radicals. In our studies, N-aryl amidyl radical, amidinyl radical and iminyl radical cation intermediates are generated from N-H precursors through direct electrolysis or indirect electrolysis assisted by a redox catalyst. In addition, an electrocatalytic method that converts oximes to iminoxyl radicals has also been developed. The electrophilic amidyl radical intermediates can participate in 5-exo or 6-exo cyclization with alkenes and alkynes to afford C-centered radicals, which can then undergo various transformations such as H atom abstraction, single-electron transfer oxidation to a carbocation, cyclization, or aromatic substitution, leading to a diverse range of N-heterocyclic products. Furthermore, amidinyl radicals, iminyl radical cations, and iminoxyl radicals can undergo intramolecular aromatic substitution to afford various N-heteroaromatic compounds. Importantly, the electrochemical reaction can be channeled toward a specific product despite the presence of other competing pathways. For a successful electrosynthesis, it is important to take into consideration of both the electron transfer steps associated with the electrode and the nonelectrode related processes. A unique feature of electrochemistry is the simultaneous occurrence of anodic oxidation and cathodic reduction, which, as this Account demonstrates, allows the dehydrogenative transformations to proceed through H2 evolution without the need for chemical oxidants. In addition, cathodic solvent reduction can continuously generate a low concentration of base, which facilitates anodic substrate oxidation. Such a mechanistic paradigm obviates the need for stoichiometric strong bases and avoids base-promoted decomposition of sensitive substrates or products. Furthermore, electrode materials can also be adjusted to control the reaction outcome, as demonstrated by the synthesis of N-heteroaromatics and the corresponding N-oxides from biaryl ketoximes.

16.
Angew Chem Int Ed Engl ; 59(34): 14275-14280, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32489009

RESUMO

Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3 )-H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3 )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl- . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.

17.
Angew Chem Int Ed Engl ; 59(26): 10626-10632, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227555

RESUMO

Decarboxylative C-H functionalization reactions are highly attractive methods for forging carbon-carbon bonds considering their inherent step- and atom-economical features and the pervasiveness of carboxylic acids and C-H bonds. An ideal approach to achieve these dehydrogenative transformations is through hydrogen evolution without using any chemical oxidants. However, effective couplings by decarboxylative carbon-carbon bond formation with proton reduction remain an unsolved challenge. Herein, we report an electrophotocatalytic approach that merges organic electrochemistry with photocatalysis to achieve the efficient direct decarboxylative C-H alkylation and carbamoylation of heteroaromatic compounds through hydrogen evolution. This electrophotocatalytic method, which combines the high efficiency and selectivity of photocatalysis in promoting decarboxylation with the superiority of electrochemistry in effecting proton reduction, enables the efficient coupling of a wide range of heteroaromatic bases with a variety of carboxylic acids and oxamic acids. Advantageously, this method is scalable to decagram amounts, and applicable to the late-stage functionalization of drug molecules.

18.
Med Sci Monit ; 25: 760-770, 2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30684444

RESUMO

BACKGROUND Resveratrol is a multifunctional bioactive substance that has effects in anti-inflammation and prevention of ischemia-reperfusion injury. This study compared the inflammation and expression of related proteins during the early stages after transplantation to explore the effects and mechanisms of resveratrol on transplanted lung. MATERIAL AND METHODS Sprague-Dawley rats were randomized to receive pretreatment of resveratrol suspension (60 mg/kg; RES group), dexamethasone (1 mg/kg; DEM group), or normal saline solution (2 mL/kg; control group) 1 h before lung transplantation. The cytokine concentration in the serum and bronchoalveolar lavage fluid (BALF) of the recipients was determined 24 h after transplantation. Histopathologic evaluation, including lung injury score, and the expression of necroptosis-associated proteins was assessed. RESULTS Histopathologic evaluation showed pneumocyte damage and endothelialitis associated with hemorrhage in the alveoli in the control group, the severity of which was greater than that in the other 2 groups. The levels of interleukin-6 and tumor necrosis factor-a in the serum and BALF of the RES and DEM groups were lower than those in the control group. The expression of necroptosis-associated proteins in the RES group was lower than that in the control group, and was inversely proportional to lung injury. CONCLUSIONS Pretreatment with resveratrol protected rat lung in the early stages after transplantation. We determined a relationship between necroptosis-associated proteins and transplanted lung injury, which suggests that the mechanism of lung transplantation-associated ischemia-reperfusion injury may be related to necroptosis.


Assuntos
Transplante de Pulmão/métodos , Resveratrol/farmacologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/análise , Citocinas/sangue , Dexametasona/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/análise , Pulmão/patologia , Masculino , Alvéolos Pulmonares/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Resveratrol/metabolismo , Fator de Necrose Tumoral alfa/análise
19.
Angew Chem Int Ed Engl ; 58(14): 4592-4595, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650241

RESUMO

A photoelectrochemical method for the C-H alkylation of heteroarenes with organotrifluoroborates has been developed. The merger of electrocatalysis and photoredox catalysis provides a chemical oxidant-free approach for the generation and functionalization of alkyl radicals from organotrifluoroborates. A variety of heteroarenes were functionalized using primary, secondary, and tertiary alkyltrifluoroborates with excellent regio- and chemoselectivity.

20.
Angew Chem Int Ed Engl ; 58(20): 6650-6653, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30908799

RESUMO

Reported herein is the synthesis of benzofused six-membered S-heterocycles by intramolecular dehydrogenative C-S coupling using a modular flow electrolysis cell. The continuous-flow electrosynthesis not only ensures efficient product formation, but also obviates the need for transition-metal catalysts, oxidizing reagents, and supporting electrolytes. Reaction scale-up is conveniently achieved through extended electrolysis without changing the reaction conditions and equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA