Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Stroke ; 54(7): 1777-1785, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37363945

RESUMO

BACKGROUND: Stroke is a leading cause of death and disability worldwide. Atrial fibrillation (AF) is a common cause of stroke but may not be detectable at the time of stroke. We hypothesized that an AF polygenic risk score (PRS) can discriminate between cardioembolic stroke and noncardioembolic strokes. METHODS: We evaluated AF and stroke risk in 26 145 individuals of European descent from the Stroke Genetics Network case-control study. AF genetic risk was estimated using 3 recently developed PRS methods (LDpred-funct-inf, sBayesR, and PRS-CS) and 2 previously validated PRSs. We performed logistic regression of each AF PRS on AF status and separately cardioembolic stroke, adjusting for clinical risk score (CRS), imputation group, and principal components. We calculated model discrimination of AF and cardioembolic stroke using the concordance statistic (c-statistic) and compared c-statistics using 2000-iteration bootstrapping. We also assessed reclassification of cardioembolic stroke with the addition of PRS to either CRS or a modified CHA2DS2-VASc score alone. RESULTS: Each AF PRS was significantly associated with AF and with cardioembolic stroke after adjustment for CRS. Addition of each AF PRS significantly improved discrimination as compared with CRS alone (P<0.01). When combined with the CRS, both PRS-CS and LDpred scores discriminated both AF and cardioembolic stroke (c-statistic 0.84 for AF; 0.74 for cardioembolic stroke) better than 3 other PRS scores (P<0.01). Using PRS-CS PRS and CRS in combination resulted in more appropriate reclassification of stroke events as compared with CRS alone (event reclassification [net reclassification indices]+=14% [95% CI, 10%-18%]; nonevent reclassification [net reclassification indices]-=17% [95% CI, 15%-0.19%]) or the modified CHA2DS2-VASc score (net reclassification indices+=11% [95% CI, 7%-15%]; net reclassification indices-=14% [95% CI, 12%-16%]) alone. CONCLUSIONS: Addition of polygenic risk of AF to clinical risk factors modestly improves the discrimination of cardioembolic from noncardioembolic strokes, as well as reclassification of stroke subtype. Polygenic risk of AF may be a useful biomarker for identifying strokes caused by AF.


Assuntos
Fibrilação Atrial , AVC Embólico , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudos de Casos e Controles , AVC Embólico/epidemiologia , AVC Embólico/genética , AVC Embólico/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Fatores de Risco , Medição de Risco
2.
BMC Genomics ; 24(1): 134, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941539

RESUMO

BACKGROUND: Autozygosity, the proportion of the genome that is homozygous by descent, has been associated with variation in multiple health-related traits impacting evolutionary fitness. Autozygosity (FROH) is typically measured from runs of homozygosity (ROHs) that arise when identical-by-descent (IBD) haplotypes are inherited from each parent. Population isolates with a small set of common founders have elevated autozygosity relative to outbred populations. METHODS: In this study, we examined whether degree of autozygosity was associated with variation in 96 cardiometabolic traits among 7221 Old Order Amish individuals residing in Lancaster County, PA. We estimated the average length of an ROH segment to be 6350 KB, with each individual having on average 17.2 segments 1.5 KB or larger. Measurements of genome-wide and regional FROH were used as the primary predictors of trait variation in association analysis. RESULTS: In genome-wide FROH analysis, we did not identify any associations that withstood Bonferroni-correction (p = 0.0005). However, on regional FROH analysis, we identified associations exceeding genome-wide thresholds for two traits: serum bilirubin levels, which were significantly associated with a region on chromosome 2 localized to a region surrounding UGT1A10 (p = 1 × 10- 43), and HbA1c levels, which were significantly associated with a region on chromosome 8 localized near CHRNB3 (p = 8 × 10- 10). CONCLUSIONS: These analyses highlight the potential value of autozygosity mapping in founder populations.


Assuntos
Amish , Herança Multifatorial , Humanos , Amish/genética , Polimorfismo de Nucleotídeo Único , Genoma , Homozigoto , Endogamia
3.
Stroke ; 53(3): 875-885, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34727735

RESUMO

BACKGROUND AND PURPOSE: Stroke is the leading cause of death and long-term disability worldwide. Previous genome-wide association studies identified 51 loci associated with stroke (mostly ischemic) and its subtypes among predominantly European populations. Using whole-genome sequencing in ancestrally diverse populations from the Trans-Omics for Precision Medicine (TOPMed) Program, we aimed to identify novel variants, especially low-frequency or ancestry-specific variants, associated with all stroke, ischemic stroke and its subtypes (large artery, cardioembolic, and small vessel), and hemorrhagic stroke and its subtypes (intracerebral and subarachnoid). METHODS: Whole-genome sequencing data were available for 6833 stroke cases and 27 116 controls, including 22 315 European, 7877 Black, 2616 Hispanic/Latino, 850 Asian, 54 Native American, and 237 other ancestry participants. In TOPMed, we performed single variant association analysis examining 40 million common variants and aggregated association analysis focusing on rare variants. We also combined TOPMed European populations with over 28 000 additional European participants from the UK BioBank genome-wide array data through meta-analysis. RESULTS: In the single variant association analysis in TOPMed, we identified one novel locus 13q33 for large artery at whole-genome-wide significance (P<5.00×10-9) and 4 novel loci at genome-wide significance (P<5.00×10-8), all of which need confirmation in independent studies. Lead variants in all 5 loci are low-frequency but are more common in non-European populations. An aggregation of synonymous rare variants within the gene C6orf26 demonstrated suggestive evidence of association for hemorrhagic stroke (P<3.11×10-6). By meta-analyzing European ancestry samples in TOPMed and UK BioBank, we replicated several previously reported stroke loci including PITX2, HDAC9, ZFHX3, and LRCH1. CONCLUSIONS: We represent the first association analysis for stroke and its subtypes using whole-genome sequencing data from ancestrally diverse populations. While our findings suggest the potential benefits of combining whole-genome sequencing data with populations of diverse genetic backgrounds to identify possible low-frequency or ancestry-specific variants, they also highlight the need to increase genome coverage and sample sizes.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Grupos Raciais/genética , Acidente Vascular Cerebral/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
4.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variação Genética , Hemoglobinas Glicadas/genética , Grupos Populacionais/genética , Medicina de Precisão , Estudos de Coortes , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
5.
Am J Med Genet A ; 185(11): 3476-3484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34467620

RESUMO

Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost-effective targeted precision medicine.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genômica , Adulto , Amish/genética , Exoma/genética , Feminino , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/epidemiologia , Testes Genéticos , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Sequenciamento do Exoma
6.
Stroke ; 51(11): 3356-3360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32912094

RESUMO

BACKGROUND AND PURPOSE: The genetic contribution to ischemic stroke may include rare- or low-frequency variants of high-penetrance and large-effect sizes. Analyses focusing on early-onset disease, an extreme-phenotype, and on the exome, the protein-coding portion of genes, may increase the likelihood of identifying such rare functional variants. To evaluate this hypothesis, we implemented a 2-stage discovery and replication design, and then addressed whether the identified variants also associated with older-onset disease. METHODS: Discovery was performed in UMD-GEOS Study (University of Maryland-Genetics of Early-Onset Stroke), a biracial population-based study of first-ever ischemic stroke cases 15 to 49 years of age (n=723) and nonstroke controls (n=726). All participants had prior GWAS (Genome Wide Association Study) and underwent Illumina exome-chip genotyping. Logistic-regression was performed to test single-variant associations with all-ischemic stroke and TOAST (Trial of ORG 10172 in Acute Stroke Treatment) subtypes in Whites and Blacks. Population level results were combined using meta-analysis. Gene-based aggregation testing and meta-analysis were performed using seqMeta. Covariates included age and gender, and principal-components for population structure. Pathway analyses were performed across all nominally associated genes for each stroke outcome. Replication was attempted through lookups in a previously reported meta-analysis of early-onset stroke and a large-scale stroke genetics study consisting of primarily older-onset cases. RESULTS: Gene burden tests identified a significant association with NAT10 in small-vessel stroke (P=3.79×10-6). Pathway analysis of the top 517 genes (P<0.05) from the gene-based analysis of small-vessel stroke identified several signaling and metabolism-related pathways related to neurotransmitter, neurodevelopmental notch-signaling, and lipid/glucose metabolism. While no individual SNPs reached chip-wide significance (P<2.05×10-7), several were near, including an intronic variant in LEXM (rs7549251; P=4.08×10-7) and an exonic variant in TRAPPC11 (rs67383011; P=5.19×10-6). CONCLUSIONS: Exome-based analysis in the setting of early-onset stroke is a promising strategy for identifying novel genetic risk variants, loci, and pathways.


Assuntos
AVC Isquêmico/genética , Adolescente , Adulto , Negro ou Afro-Americano , Idade de Início , Exoma/genética , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , População Branca , Adulto Jovem
7.
Neurocrit Care ; 33(1): 82-89, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595394

RESUMO

BACKGROUND: Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. METHODS: Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. RESULTS: At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin-angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. CONCLUSIONS: This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm.


Assuntos
Aneurisma Roto/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , RNA Mensageiro/sangue , Hemorragia Subaracnóidea/fisiopatologia , Vasoespasmo Intracraniano/genética , Adulto , Idoso , Aneurisma Roto/complicações , Feminino , Humanos , Aneurisma Intracraniano/complicações , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Hemorragia Subaracnóidea/complicações , Transcriptoma , Vasoespasmo Intracraniano/etiologia
8.
Stroke ; 50(7): 1734-1741, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177973

RESUMO

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Big Data , Isquemia Encefálica/epidemiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Variações Dependentes do Observador , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Acidente Vascular Cerebral/epidemiologia
9.
Circ Res ; 120(5): 816-834, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-27908912

RESUMO

RATIONALE: Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear. OBJECTIVE: This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium. METHODS AND RESULTS: Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model. A more robust in vitro proliferative capacity of nCPCs, compared with aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media was significantly more effective than nCPCs, aCPC-derived TCM, or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High-resolution accurate mass spectrometry with reverse phase liquid chromatography fractionation and mass spectrometry was used to identify proteins in the secretome of aCPCs and nCPCs, and the literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of myocardial infarction. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nCPC-derived TCM and 513 proteins in aCPC-derived TCM. The literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nCPC-derived TCM and aCPC-derived TCM, respectively. One leading candidate pathway is heat-shock factor-1, potentially affecting 8 identified pathways for nCPC-derived TCM but none for aCPC-derived TCM. To validate this prediction, we demonstrated that the modulation of heat-shock factor-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome. CONCLUSIONS: A deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.


Assuntos
Miócitos Cardíacos/fisiologia , Proteoma/biossíntese , Proteoma/genética , Proteômica/métodos , Células-Tronco/fisiologia , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Recém-Nascido , Masculino , Ratos
10.
Stroke ; 49(3): 543-548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29438084

RESUMO

BACKGROUND AND PURPOSE: Although depression is a risk factor for stroke in large prospective studies, it is unknown whether these conditions have a shared genetic basis. METHODS: We applied a polygenic risk score (PRS) for major depressive disorder derived from European ancestry analyses by the Psychiatric Genomics Consortium to a genome-wide association study of ischemic stroke in the Stroke Genetics Network of National Institute of Neurological Disorders and Stroke. Included in separate analyses were 12 577 stroke cases and 25 643 controls of European ancestry and 1353 cases and 2383 controls of African ancestry. We examined the association between depression PRS and ischemic stroke overall and with pathogenic subtypes using logistic regression analyses. RESULTS: The depression PRS was associated with higher risk of ischemic stroke overall in both European (P=0.025) and African ancestry (P=0.011) samples from the Stroke Genetics Network. Ischemic stroke risk increased by 3.0% (odds ratio, 1.03; 95% confidence interval, 1.00-1.05) for every 1 SD increase in PRS for those of European ancestry and by 8% (odds ratio, 1.08; 95% confidence interval, 1.04-1.13) for those of African ancestry. Among stroke subtypes, elevated risk of small artery occlusion was observed in both European and African ancestry samples. Depression PRS was also associated with higher risk of cardioembolic stroke in European ancestry and large artery atherosclerosis in African ancestry persons. CONCLUSIONS: Higher polygenic risk for major depressive disorder is associated with increased risk of ischemic stroke overall and with small artery occlusion. Additional associations with ischemic stroke subtypes differed by ancestry.


Assuntos
População Negra/genética , Depressão/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial , Acidente Vascular Cerebral/genética , População Branca/genética , Idoso , Idoso de 80 Anos ou mais , Depressão/etnologia , Depressão/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/etnologia
11.
Ann Neurol ; 81(3): 383-394, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27997041

RESUMO

OBJECTIVE: Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises one quarter of all ischemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown that younger-onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger-onset SVS population, to identify novel associations with stroke. METHODS: We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on messenger RNA (mRNA) expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain. RESULTS: We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (odds ratio [OR; 95% confidence interval {CI}] = 1.16 [1.10-1.22]; p = 3.2 × 10-9 ). The lead single-nucleotide polymorphism (rs12445022) was also associated with cerebral white matter hyperintensities (OR [95% CI] = 1.10 [1.05-1.16]; p = 5.3 × 10-5 ; N = 3,670), but not intracerebral hemorrhage (OR [95% CI] = 0.97 [0.84-1.12]; p = 0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p = 9.4 × 10-7 ) and DNA methylation at probe cg16596957 in whole blood (p = 5.3 × 10-6 ). INTERPRETATION: 16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. Ann Neurol 2017;81:383-394.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Cromossomos Humanos Par 16/genética , Estudo de Associação Genômica Ampla , Acidente Vascular Cerebral/genética , Dedos de Zinco/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Loci Gênicos , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral Lacunar/genética
12.
J Am Soc Nephrol ; 28(3): 923-934, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27729571

RESUMO

The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10-6 for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10-7; replication P=0.039; combined P=7.42×10-9). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10-6). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10-4) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.


Assuntos
População Negra/genética , Progressão da Doença , Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica/genética , População Branca/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
13.
J Am Soc Nephrol ; 28(8): 2311-2321, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28360221

RESUMO

Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10-6 Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10-5), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10-10 Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10-12). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10-8). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.


Assuntos
Loci Gênicos , Plasma/química , Simportadores de Sódio-Bicarbonato/genética , Sódio/análise , Fatores de Transcrição/genética , Desequilíbrio Hidroeletrolítico/sangue , Desequilíbrio Hidroeletrolítico/genética , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Grupos Raciais
14.
Stroke ; 47(2): 307-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732560

RESUMO

BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years. METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls. RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.


Assuntos
Isquemia Encefálica/genética , Serina Endopeptidases/genética , Acidente Vascular Cerebral/genética , Adulto , Idade de Início , Idoso , Povo Asiático/genética , População Negra/genética , Isquemia Encefálica/complicações , Cromossomos Humanos Par 10 , Simulação por Computador , DNA Intergênico/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Serina Endopeptidases/metabolismo , Acidente Vascular Cerebral/etiologia , População Branca/genética
15.
PLoS Pathog ; 8(10): e1002964, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093935

RESUMO

Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria.


Assuntos
Genes de Protozoários , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Malária/transmissão , Parasitemia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/sangue , Reprodução Assexuada , Transcrição Gênica , Transcriptoma
16.
Alzheimer Dis Assoc Disord ; 28(3): 226-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24731980

RESUMO

BACKGROUND: Defining the RNA transcriptome in Alzheimer Disease (AD) will help understand the disease mechanisms and provide biomarkers. Though the AD blood transcriptome has been studied, effects of white matter hyperintensities (WMH) were not considered. This study investigated the AD blood transcriptome and accounted for WMH. METHODS: RNA from whole blood was processed on whole-genome microarrays. RESULTS: A total of 293 probe sets were differentially expressed in AD versus controls, 5 of which were significant for WMH status. The 288 AD-specific probe sets classified subjects with 87.5% sensitivity and 90.5% specificity. They represented 188 genes of which 29 have been reported in prior AD blood and 89 in AD brain studies. Regulated blood genes included MMP9, MME (Neprilysin), TGFß1, CA4, OCLN, ATM, TGM3, IGFR2, NOV, RNF213, BMX, LRRN1, CAMK2G, INSR, CTSD, SORCS1, SORL1, and TANC2. CONCLUSIONS: RNA expression is altered in AD blood irrespective of WMH status. Some genes are shared with AD brain.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Biomarcadores/sangue , RNA/sangue , Substância Branca/patologia , Idoso , Doença de Alzheimer/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
17.
Plants (Basel) ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592782

RESUMO

Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.

18.
medRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853993

RESUMO

Objective: Although stroke incidence is decreasing in older ages, it is increasing in young adults. While these divergent trends in stroke incidence are at least partially attributable to diverging prevalence trends in stoke risk factors, age-dependent differences in the impact of stroke risk factors on stroke may also contribute. To address this issue, we utilized Mendelian Randomization (MR) to assess differences in the association of stroke risk factors between early onset ischemic stroke (EOS) and late onset ischemic stroke (LOS). Methods: We employed a two-sample MR design with inverse variance weighting as the primary method of analysis. Using large publicly available genome-wide association summary results, we calculated MR estimates for conventional stroke risk factors (body mass index, total, HDL-and LDL-cholesterol, triglycerides, type 2 diabetes, systolic and diastolic blood pressure, and smoking) in EOS cases (onset 18-59 years, n = 6,728) and controls from the Early Onset Stroke Consortium and in LOS cases (onset ≥ 60 years, n = 9,272) and controls from the Stroke Genetics Network. We then compared odds ratios between EOS and LOS, stratified by TOAST subtypes, to determine if any differences observed between effect sizes could be attributed to differences in the distribution of stroke subtypes. Results: EOS was significantly associated with all risk factors except for total cholesterol levels, and LOS was associated with all risk factors except for triglyceride and total cholesterol levels. The associations of BMI, DBP, SBP, and HDL-cholesterol were significantly stronger in EOS than LOS (all p < 0.004). The differential distribution of stroke subtypes could not explain the difference in effect size observed between EOS and LOS. Conclusion: These results suggest that interventions targeted at lowering body mass index and blood pressure may be particularly important for reducing stroke risk in young adults.

19.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38571307

RESUMO

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Assuntos
Proteína C-Reativa , Metilação de DNA , Humanos , Proteína C-Reativa/genética , Epigênese Genética , DNA , Inflamação/genética , Estudo de Associação Genômica Ampla , Ilhas de CpG , Peptídeos e Proteínas de Sinalização Intracelular/genética
20.
Genes (Basel) ; 14(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37761868

RESUMO

Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA