Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biochem Biophys Res Commun ; 539: 70-76, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422942

RESUMO

Crystallin gene mutations are responsible for about half of the congenital cataract caused by genetic disorders. L45P and Y46D mutations of γC-crystallin have been reported in patients with nuclear congenital cataract. In this study, we explored the thermal stability of wild type (WT), L45P, and Y46D mutants of γC-crystallin at low and high concentrations, as well as the effect of αA-crystallin on the thermal stability of mutants. Spectroscopic experiments were used to monitor the structural changes on temperature-gradient and time-course heating process. Intermediate morphologies were determined through cryo-electron microscopy. The thermal stability of WT and mutants at concentrations ranging up to hundreds of milligrams were assessed via the UNcle multifunctional protein stability analysis system. The results showed that L45P and Y46D mutations impaired the thermal stability of γC-crystallin at low (0.2 mg/mL) and high concentrations (up to 200 mg/mL). Notably, with increase in protein concentration, the thermal stability of L45P and Y46D mutants of γC-crystallin simultaneously decreased. Thermal stability of L45P and Y46D mutants could be rescued by αA-crystallin in a concentration-dependent manner. The dramatic decrease in thermal stability of γC-crystallin caused by L45P and Y46D mutations contributed to congenital cataract in the mature human lens.


Assuntos
Catarata/genética , Mutação , gama-Cristalinas/genética , Catarata/metabolismo , Catarata/patologia , Microscopia Crioeletrônica/métodos , Humanos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura , gama-Cristalinas/química , gama-Cristalinas/metabolismo
2.
Biochem Biophys Res Commun ; 526(2): 459-465, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32234236

RESUMO

γS-crystallin, a crucial structural lens protein, plays an important role in maintaining lens transparency through its solubility and stability. The S39C mutation, a proven pathogenic mutation involved in congenital cataract, resulted in progressive cataract in adolescents. In this study, using biophysical methods, we thoroughly investigated the effects of the S39C mutation on the γS-crystallin structure, stability and propensity for aggregations. The data from spectroscopy analyses did not reveal an effect of the S39C mutation on the native structure of monomeric γS-crystallin. However, when faced with oxidative conditions, the S39C mutation prevented γS-crystallin from forming stable disulfide-linked dimers and remarkably increased hydrophobicity and the propensity to aggregate and precipitate. Under UV irradiation, heat shock, and GdnHCl-induced denaturation, the S39C mutant tended to aggregate and was prone to form more deleterious aggregates than the wild type protein. Therefore, the S39C mutation significantly increased the sensitivity of γS-crystallin to environmental stress. However, the addition of αA-crystallin and lanosterol did not change the tendency of the mutant to aggregate. According to molecular dynamic (MD) simulations, the S39C mutation had little effect on the secondary or tertiary structures of monomeric γS-crystallin but disrupted the disulfide-linked structure of the γS-crystallin dimer. The cleavage of this bond might largely reduce the structural stability of γS-crystallin. The significant decrease in the structural stability along with the increasing aggregation tendency under environmental stress might be the major causes of progressive juvenile onset cataracts induced by the S39C mutation.


Assuntos
Catarata/genética , gama-Cristalinas/genética , Dissulfetos/química , Dissulfetos/metabolismo , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos da radiação , Modelos Moleculares , Mutação Puntual , Agregados Proteicos/efeitos da radiação , Conformação Proteica/efeitos da radiação , Desnaturação Proteica/efeitos da radiação , Multimerização Proteica/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , gama-Cristalinas/química
3.
Cytokine ; 127: 154943, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810025

RESUMO

PURPOSE: Cataracts are the most common eye complications of retinitis pigmentosa (RP). This study aimed to investigate the cytokine profiles of the aqueous humor of RP with cataracts. METHODS: The aqueous humor was collected from RP eyes with cataract (RP group, n = 20) and age-related cataract eyes (ARC group, n = 20) during cataract surgery. The levels of 37 mediators were measured with multiplex fluorescent bead-based immunoassay and compared across groups. The correlation among chemokines, growth factors, and cytokines was analyzed with Spearman's rank correlation coefficient. RESULTS: Twelve cytokines (IL-1α, IL-1ß, IL-4, IL-10, TNF-α, IFN-γ, EGF, GM-CSF, PDGF-AB/BB, TGF-α, BMP-9, and E-selection) were below the limit of detection, and the detection rate of IL-6 was significantly higher in RP group than in the ARC group (P < 0.01). Compared with those in the control group, the aqueous humor levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-(IL-)8, interferon gamma-induced protein (IP)-10, hepatocyte growth factor (HGF), platelet-derived growth factor AA (PDGF-AA), matrix metalloproteinase-2 (MMP-2), MMP3, MMP-7, MMP-8, plasminogen activator inhibitor-1 (PAI-1), and thrombospondin-2 (TSP-2) in the RP group increased significantly (P < 0.01). A lower level of BMP-4 in the aqueous humor was observed in the RP patients than in the controls (P < 0.05). CONCLUSIONS: Significantly increased levels of PDGF-AA, MMP2, MMP3, MMP-7, MMP-8, PAI-1, and TSP-2 and lower levels of BMP-4 were found in the aqueous humor of RP patients. This result indicates a disturbance of the extracellular matrix (ECM) and cytokines in RP patients and suggests a possible role of these cytokines in the pathogenesis of capsular contraction syndrome (CCS) in RP patients.


Assuntos
Humor Aquoso/metabolismo , Catarata/metabolismo , Citocinas/metabolismo , Retinose Pigmentar/metabolismo , Adulto , Idoso , Catarata/complicações , Feminino , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Derivado de Plaquetas/metabolismo , Retinose Pigmentar/complicações , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
4.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495644

RESUMO

Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson-Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations.


Assuntos
Análise de Elementos Finitos , Canais Iônicos , Modelos Biológicos , Modelos Teóricos , Algoritmos , Canais Iônicos/química , Canais Iônicos/metabolismo , Reprodutibilidade dos Testes
5.
Reprod Biol Endocrinol ; 15(1): 73, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874155

RESUMO

Uterine natural killer (uNK) cells are short-lived, terminally differentiated and the most abundant lymphocytes in the uterus which play a crucial role in the spiral arteriole modification and establishment of successful pregnancy. Dysregulation of uNK cells has been linked to gestational implications such as recurrent pregnancy loss, preeclampsia and fetal growth retardation. There is evidence showing that progesterone and estrogen can regulate the recruitment, proliferation, differentiation and function of uNK cells via direct action on intracellular nuclear receptors or through intermediary cells in the uterus during early pregnancy. As the deepening of related research in this field, the role of conceptus in such regulation has received extensive attention, it utilizes endocrine signaling (hCG), juxtacrine signaling (HLA-C, HLA-E, HLA-G) and paracrine signaling (cytokines) to facilitate the activities of uNK cells. In addition, under the influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to reduce cytotoxicity of uNK cells and promote angiogenesis. In this review, we aim to concentrate on the novel findings of ovarian hormones in the regulation of uNK cells, emphasize the regulatory role of conceptus on uNK cells and highlight the proposed issues for future research in the field.


Assuntos
Embrião de Mamíferos/fisiologia , Células Matadoras Naturais/fisiologia , Ovário/fisiologia , Primeiro Trimestre da Gravidez/imunologia , Útero/citologia , Útero/imunologia , Aborto Habitual/imunologia , Animais , Comunicação Celular/imunologia , Implantação do Embrião/imunologia , Feminino , Idade Gestacional , Humanos , Gravidez
6.
Mol Reprod Dev ; 82(11): 898-906, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26226925

RESUMO

The androgen receptor (AR) is a ligand-activated transcription factor that is important for both the male and female reproductive systems. The expression and regulation of AR in the uterine endometrium during early pregnancy and decidualization remain relatively under-investigated, so we sought to immunohistochemically examine the spatiotemporal expression of AR in mouse uteri during the peri-implantation period as well as in response to specific steroid hormones. AR protein was found in the nuclei of uterine stromal cells starting on pregnancy Days 1 and 2, with its abundance increasing on Days 3 and 4. From pregnancy Days 5 to 9, however, the expression of AR markedly declined in stromal zones of uteri. No signal was detected in the decidualized cells surrounding the site of embryo implantation; moreover, no AR immunostaining was observed in decidualized uterine cells in an artificial oil-induced model of decidualization. Progesterone significantly inhibited AR protein expression, whereas estrogen dramatically elevated AR abundance in the stroma of ovariectomized mouse uteri. Taken together, our results are the first to demonstrate that decidualization and progesterone significantly inhibited the AR protein expression in vivo, whereas estrogen increased AR protein levels in the stromal cells of mouse uteri. These responses might be advantageous for the proliferation and differentiation of uterine stroma and for embryo implantation during early pregnancy.


Assuntos
Núcleo Celular/metabolismo , Decídua/metabolismo , Regulação da Expressão Gênica/fisiologia , Gravidez/metabolismo , Receptores Androgênicos/biossíntese , Animais , Decídua/citologia , Feminino , Masculino , Camundongos
7.
Clin Case Rep ; 12(1): e8417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188847

RESUMO

This case report aims to emphasize that subacute occurrence of nuclear cataract might be one of the underestimated manifestations of mitochondrial encephalomyopathy, thus periodical ophthalmologic examinations are recommended.

8.
Heliyon ; 10(10): e31236, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803853

RESUMO

A γ-aminobutyric acid (GABA)-producing strain JC30 was isolated from traditional kimchi, which was identified as Pediococcus pentosaceus by 16S rDNA sequencing. P. pentosaceus JC30 was highly tolerant to acid, bile salt, and high temperatures. The survival rate of JC30 in MRS medium (pH 2.5) for 3 h was 60.96 %. Furthermore, the survival rate of JC30 in MRS medium with 3 mg/mL bile salt for 24 h was 86.62 %. The survival rate of JC30 in MRS medium at 56 °C and 58 °C for 10 min was 97.17 % and 78.20 %, respectively. When 2 % v/v JC30 (8.0 log10 CFU/mL) was added to prepare sourdough and the sourdough was then used to make bread, the bread had a higher specific volume (5.13 ± 0.12 mL/g) and GABA content (3.32 ± 0.04 mg/g DW) than the control.

9.
Int J Biol Macromol ; 262(Pt 2): 130191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360245

RESUMO

Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that ßA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of ßA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of ßA3-R114C and may help in the development of potential treatment strategies for related cataracts.


Assuntos
Catarata , Cadeia A de beta-Cristalina , Humanos , Catarata/genética , Catarata/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Mutação , Cadeia A de beta-Cristalina/genética
10.
Int J Biol Macromol ; 277(Pt 2): 134292, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084439

RESUMO

Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.


Assuntos
Catarata , Agregados Proteicos , Estabilidade Proteica , gama-Cristalinas , Humanos , gama-Cristalinas/genética , gama-Cristalinas/química , gama-Cristalinas/metabolismo , Catarata/genética , Catarata/metabolismo , Células HEK293 , Mutação , Simulação de Dinâmica Molecular , Dobramento de Proteína , Conformação Proteica , Solubilidade , Agregação Patológica de Proteínas/genética
11.
PLoS One ; 18(4): e0284181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058458

RESUMO

This meta-analysis aims to compare corneal injuries and function after femtosecond laser-assisted cataract surgery (FLACS) and conventional phacoemulsification surgery (CPS). A comprehensive literature search of PubMed, EMBASE, and the Cochrane Controlled Trials Register was conducted to identify randomized controlled trials (RCT) and high-quality prospective comparative cohort studies comparing FLACS with CPS. Endothelial cell loss percentage (ECL%), central corneal thickness (CCT), endothelial cell density (ECD), endothelial cell loss (ECL), percentage of the hexagonal cell (6A), and coefficient of variance (CoV) were used as an indicator of corneal injury and function. Totally 42 trials (23 RCTs and 19 prospective cohort studies), including 3916 eyes, underwent FLACS, and a total of 3736 eyes underwent CPS. ECL% is significantly lower in the FLACS group at 1-3 days (P = 0.005), 1 week (P = 0.004), 1 month (P<0.0001), 3 months (P = 0.001), and 6 months (P = 0.004) after surgery compared to CPS. ECD and ECL appeared no statistically significant difference between the two groups, except for the significant reduction of ECD at 3 months in the CPS group (P = 0.002). CCT was significantly lower in the FLACS group at 1 week (P = 0.05) and 1 month (P = 0.002) early postoperatively. While at 1-3 days (P = 0.50), 3 months (P = 0.18), and 6 months (P = 0.11), there was no difference between the FLACS group and the CPS group. No significant difference was found in the percentage of hexagonal cells and the coefficient of variance. FLACS, compared with CPS, reduces corneal injury in the early postoperative period. Corneal edema recovered faster in the FLACS group in the early postoperative period. In addition, FLACS may be a better option for patients with corneal dysfunction.


Assuntos
Extração de Catarata , Catarata , Lesões da Córnea , Terapia a Laser , Facoemulsificação , Humanos , Facoemulsificação/efeitos adversos , Lasers
12.
Br J Ophthalmol ; 107(11): 1750-1756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35383051

RESUMO

BACKGROUND/AIMS: Nanophthalmos is a rare developmental, bilateral, sporadic or hereditary form of microphthalmos. In this study, the heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene were identified in two patients with nanophthalmos. This study reports the clinical manifestation and the underlying pathogenic mechanism. METHODS: Whole-exome sequencing was performed to identify the pathogenic genes in a Chinese family with nanophthalmos. The molecular simulation was used to predict the structures of wild-type or mutant PRSS56. The PRSS56 wild-type or mutation overexpression cellular models have been constructed accordingly. The subcellular localisation was then observed using immunofluorescence and Western-blot techniques. The Folin-Ciocalteu assay was carried out to evaluate serine-type endopeptidase activity, and a wound-healing assay was used to examine the cellular migratory ability. RESULTS: The whole-exome sequencing revealed that heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene might contribute to nanophthalmos. Both variants were not identified in the dbSNP, 1000 Genome project or ESP6500 databases. Furthermore, the variants were highly conserved and were involved in biological functions. The mutations result in destructive protein structure and impede serine-type endopeptidase activity, thereby impairing subcellular localisation and cellular migration. CONCLUSION: The c.781G>A and c.1066dup variants of the PRSS56 gene might negatively affect protein structures, subcellular localisation, serine-type endopeptidase activity and cellular migratory ability. Together, these changes could lead to the development of nanophthalmos. This study identifies the PRSS56 gene as a potential target for nanophthalmos diagnosis and treatment.

13.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37940560

RESUMO

Electroacupuncture (EA) is widely applied in clinical therapy for spinal cord injury (SCI). However, the associated molecular mechanism has yet to be elucidated. The current study aimed to investigate the underlying mechanism of EA in neurologic repair after SCI. First, we investigated the role of EA in the neurologic repair of the SCI rat model. The expression levels of human antigen R (HuR) and Krüppel-like factor 9 (KLF9) in spinal cord tissues were quantified after treatment. Second, we conducted bioinformatics analysis, RNA pull-down assays, RNA immunoprecipitation, and luciferase reporter gene assay to verify the binding of HuR and KLF9 mRNA for mRNA stability. Last, HuR inhibitor CMLD-2 was used to verify the enhanced effect of EA on neurologic repair after SCI via the HuR/KLF9 axis. Our data provided convincing evidence that EA facilitated the recovery of neuronal function in SCI rats by reducing apoptosis and inflammation of neurons. We found that EA significantly diminished the SCI-mediated upregulation of HuR, and HuR could bind to the 3' untranslated region of KLF9 mRNA to protect its decay. In addition, a series of in vivo experiments confirmed that CMLD-2 administration increased EA-mediated pain thresholds and motor function in SCI rats. Collectively, the present study showed that EA improved pain thresholds and motor function in SCI rats via impairment of HuR-mediated KLF9 mRNA stabilization, thus providing a better understanding of the regulatory mechanisms regarding EA-mediated neurologic repair after SCI.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Animais , Humanos , Ratos , Inflamação/terapia , Fatores de Transcrição Kruppel-Like , RNA , RNA Mensageiro , Medula Espinal , Traumatismos da Medula Espinal/genética
14.
Br J Ophthalmol ; 107(3): 442-446, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34593413

RESUMO

BACKGROUND: Age-related cataract, which presents as a cloudy lens, is the primary cause of vision impairment worldwide and can cause more than 80% senile blindness. Previous studies mainly explored the profile of lens proteins at a low concentration because of technical limitations, which could not reflect physiological status. This study focuses on protein stability changes with ageing under physiological conditions using a novel equipment, Unchained Labs (Uncle), to evaluate protein thermal stability. METHODS: Samples were assessed through Unchained Labs, size-exclusion chromatography, western blot and biophysics approaches including the Thioflavin T, ultraviolet and internal fluorescence. RESULTS: With age, the melting temperature value shifted from 67.8°C in the young group to 64.2°C in the aged group. Meanwhile, crystallin may form more isomeric oligomers and easy to be degraded in aged lenses. The spectroscopic and size-exclusion chromatography results show a higher solubility after administrated with lanosterol under the environmental stress. CONCLUSION: We are the first to explore rabbit lens protein stability changes with ageing using biophysical methods under physiological conditions, and this study can conclude that the structural stability and solubility of lens proteins decrease with ageing. Additionally, lanosterol could aid in resolving protein aggregation, making it a potential therapeutic option for cataracts. So, this study provides cataract models for anti-cataract drug developments.


Assuntos
Catarata , Cristalinas , Cristalino , Animais , Coelhos , Lanosterol/metabolismo , Lanosterol/uso terapêutico , Cristalino/metabolismo , Catarata/tratamento farmacológico , Envelhecimento
15.
Br J Ophthalmol ; 107(12): 1936-1942, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36126102

RESUMO

BACKGROUND/AIMS: Congenital cataract is the leading cause of visual disability and blindness in childhood. ßB1-crystallin (CRYBB1) comprises about 1/10th of crystallin structural proteins, forming heteromers to maintain lens transparency. We previously reported a CRYBB1 mutation (c.347T>C, p.L116P) affecting 16 patients in a congenital nuclear cataract family. In this study, we investigate the underlying pathogenic mechanism of ßB1-L116P. METHODS: Protein isolation, size-exclusion chromatography, spectroscopy, Uncle stability screens and molecular dynamics simulations were used to assess ßA3- and ßB1-crystallin thermal stability, structural properties and heteromer formation. RESULTS: Cells that overexpressed ßB1-L116P tended to form aggregates and precipitations under heat-shock stress. Thermal denaturation and time-dependent turbidity experiments showed that thermal stability was significantly impaired. Moreover, protein instability appeared to increase with elevated concentrations detected by the Uncle system. Additionally, ßA3 had a relative protective effect on ßB1-L116P after heteromers were formed, although ßA3 was relatively unstable and was usually protected by basic ß-crystallins. Molecular dynamic simulations revealed that L116P mutation altered the hydrophobic residues at the surface around the mutant site, providing solvents more access to the internal and hydrophobic parts of the protein. CONCLUSIONS: Decreased ßB1-crystallin thermal stability in the presence of the cataract-related L116P mutation contributes significantly to congenital cataract formation. Moreover, its formation of heteromers with ßA3 protects against the low thermal stability of ßB1-L116P.


Assuntos
Catarata , Cristalinas , Cristalino , Cadeia B de beta-Cristalina , Humanos , Cadeia B de beta-Cristalina/genética , Cadeia B de beta-Cristalina/química , Cadeia B de beta-Cristalina/metabolismo , Cadeia A de beta-Cristalina/genética , Catarata/genética , Cristalino/metabolismo
16.
Int J Biol Macromol ; 251: 126339, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586630

RESUMO

γS-crystallin is particularly rich in the embryonic nuclear region and is crucial to the maintenance of lens transparency and optical properties. Gene mutations in crystallin are the main factors leading to congenital hereditary cataracts, which are a major cause of visual impairment in children. Some mutations located in the 18th amino acid glycine of γS-crystallin were reported to be linking with congenital cataracts. However, the pathogenic mechanism has not been elucidated. Interestingly, we previously identified a novel variant of γS-crystallin (c.53G > A; p. G18D) with progressive cortical and sutural congenital cataracts in one Chinese family. In this study, we purified the γS-crystallin wildtype and mutant proteins to investigate the effects of the G18D mutation on the structural stability of γS-crystallin. The results showed that there were tertiary structural differences between the wild-type γS-crystallin and the G18D variant. The mutation significantly impaired the stability of γS-crystallin under environmental stress and promoted aggregation. Furthermore, molecular dynamics (MD) simulations showed that the mutation altered H-bonding and surface electrostatic potential. Significantly decreased stability along with an increased tendency to aggregate under environmental stress may be the major pathogenic factors for cataracts induced by the G18D mutation.

17.
Biomolecules ; 13(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238733

RESUMO

Congenital cataracts account for approximately 5-20% of childhood blindness worldwide and 22-30% of childhood blindness in developing countries. Genetic disorders are the primary cause of congenital cataracts. In this work, we investigated the underlying molecular mechanism of G149V point missense mutation in ßB2-crystallin, which was first identified in a three-generation Chinese family with two affected members diagnosed with congenital cataracts. Spectroscopic experiments were performed to determine the structural differences between the wild type (WT) and the G149V mutant of ßB2-crystallin. The results showed that the G149V mutation significantly changed the secondary and tertiary structure of ßB2-crystallin. The polarity of the tryptophan microenvironment and the hydrophobicity of the mutant protein increased. The G149V mutation made the protein structure loose and the interaction between oligomers was reduced, which decreased the stability of the protein. Furthermore, we compared ßB2-crystallin WT and the G149V mutant with their biophysical properties under environmental stress. We found that the G149V mutation makes ßB2-crystallin more sensitive to environmental stresses (oxidative stress, UV irradiation, and heat shock) and more likely to aggregate and form precipitation. These features might be important to the pathogenesis of ßB2-crystallin G149V mutant related to congenital cataracts.


Assuntos
Catarata , Cadeia B de beta-Cristalina , Humanos , Catarata/genética , Mutação de Sentido Incorreto , Cadeia B de beta-Cristalina/genética
18.
iScience ; 26(6): 106921, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378332

RESUMO

Lens itself has limited regeneration functionality, thus we aimed to create regenerated lens with biological function to treat cataracts rather than the intraocular lens used in cataract surgery. We induced exogenous human embryonic stem cells to directionally differentiate into lens fate like cells in vitro, mixed these cells with hyaluronate, and then implanted the mixture into lens capsule to regenerate in vivo. We successfully achieved near-complete lens regeneration, and the thickness of the regenerated lens reached 85% of the contralateral eye, showing the characteristics of biconvex shape, transparency, and a thickness and diopter close to that of natural lenses. Meanwhile, the participation of Wnt/PCP pathway in lens regeneration was verified. The regenerated lens in this study was the most transparent, thickest, and most similar to the original natural lens that has thus far been reported. Overall, these findings offer a new therapeutic strategy for cataracts and other lens diseases.

19.
Int J Biol Macromol ; 253(Pt 4): 126910, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739288

RESUMO

Congenital cataract is the leading cause of childhood blindness, which primarily results from genetic factors. γD-crystallin is the most abundant γ-crystallin and is essential for maintaining lens transparency and refractivity. Numerous mutations in γD-crystallin have been reported with unclear pathogenic mechanism. Two different cataract-causing mutations Ser78Phe and Ser78Pro in γD-crystallin were previously identified at the same conserved Ser78 residue. In this work, firstly, we purified the mutants and characterized for the structural change using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and size-exclusion chromatography (SEC). Both mutants were prone to form insoluble precipitates when expressed in Escherichia coli strain BL21 (DE3) cells. Compared with wild-type (WT), both mutations caused structural disruption, increased hydrophobic exposure, decreased solubility, and reduced thermal stability. Next, we investigated the aggregation of the mutants at the cellular level. Overexpression the mutants in HLE-B3 and HEK 293T cells could induce aggresome formations. The environmental stresses (including heat, ultraviolet irradiation and oxidative stress) promoted the formation of aggregates. Moreover, the intracellular S78F and S78P aggregates could be reversed by lanosterol. Molecular dynamic simulation indicated that both mutations disrupted the structural integrity of Greek-key motif 2. Hence, our results reveal the vital role of conserved Ser78 in maintaining the structural stability, which can offer new insights into the mechanism of cataract formation.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Humanos , Catarata/metabolismo , Mutação , Cristalino/metabolismo , Conformação Proteica , gama-Cristalinas/química , Estabilidade Proteica
20.
3D Print Addit Manuf ; 10(4): 631-639, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609581

RESUMO

Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA