Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
1.
Cell ; 163(2): 313-23, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26435105

RESUMO

In social interactions among mammals, individuals are recognized by olfactory cues, but identifying the key signals among thousands of compounds remains a major challenge. To address this need, we developed a new technique, component-activity matching (CAM), to select candidate ligands that "explain" patterns of bioactivity across diverse complex mixtures. Using mouse urine from eight different sexes and strains, we identified 23 components to explain firing rates in seven of eight functional classes of vomeronasal sensory neurons. Focusing on a class of neurons selective for females, we identified a novel family of vomeronasal ligands, steroid carboxylic acids. These ligands accounted for much of the neuronal activity of urine from some female strains, were necessary for normal levels of male investigatory behavior of female scents, and were sufficient to trigger mounting behavior. CAM represents the first step toward an exhaustive characterization of the molecular cues for natural behavior in a mammalian olfactory system.


Assuntos
Camundongos , Atrativos Sexuais/urina , Órgão Vomeronasal/fisiologia , Animais , Cromatografia Líquida , Feminino , Masculino , Camundongos Endogâmicos , Neurônios/citologia , Neurônios/fisiologia , Atrativos Sexuais/química , Comportamento Sexual Animal , Olfato , Especificidade da Espécie , Espectrometria de Massas em Tandem
2.
Plant Cell ; 36(9): 3219-3236, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38801738

RESUMO

Virus-induced drought tolerance presents a fascinating facet of biotic-abiotic interaction in plants, yet its molecular intricacies remain unclear. Our study shows that cowpea mild mottle virus (CPMMV) infection enhances drought tolerance in common bean (Phaseolus vulgaris) plants through a virus-derived small interfering RNA (vsiRNA)-activated autophagy pathway. Specifically, a 21 nt vsiRNA originating from the CPMMV Triple Gene Block1 (TGB1) gene targeted the 5' untranslated region (UTR) of the host Teosinte branched 1, Cycloidea, Proliferating Cell Factor (TCP) transcription factor gene PvTCP2, independent of the known role of TGB1 as an RNA silencing suppressor. This targeting attenuated the expression of PvTCP2, which encodes a transcriptional repressor, and in turn upregulated the core autophagy-related gene (ATG) PvATG8c, leading to activated autophagy activity surpassing the level induced by drought or CPMMV infection alone. The downstream EARLY RESPONSIVE TO DEHYDRATION (ERD) effector PvERD15 is a homologue of Arabidopsis thaliana AtERD15, which positively regulates stomatal aperture. PvERD15 was degraded in PvATG8c-mediated autophagy. Therefore, we establish a TGB1-PvTCP2-PvATG8c-PvERD15 module as a trans-kingdom fine-tuning mechanism that contributes to virus-induced drought tolerance in plant-drought-virus interactions.


Assuntos
Autofagia , Secas , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno , Autofagia/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phaseolus/virologia , Phaseolus/genética , Phaseolus/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Comovirus/fisiologia , Comovirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Seca
3.
Trends Immunol ; 44(12): 1031-1045, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932176

RESUMO

Tumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation. Current challenges and prospects are also discussed that aim to achieve a better strategy for real-time monitoring of T cell activity, predicting prognoses and responses to tumor immunotherapy, and assessing disease management.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linfócitos T , Neoplasias/terapia , Imunoterapia/métodos , Imagem Molecular
4.
J Virol ; 98(1): e0165423, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169290

RESUMO

Jeilongviruses are emerging single-stranded negative-sense RNA viruses in the Paramyxoviridae family. Tailam paramyxovirus (TlmPV) is a Jeilongvirus that was identified in 2011. Very little is known about the mechanisms that regulate viral replication in these newly emerging viruses. Among the non-structural viral proteins of TlmPV, the C protein is predicted to be translated from an open reading frame within the phosphoprotein gene through alternative translation initiation. Though the regulatory roles of C proteins in virus replication of other paramyxoviruses have been reported before, the function of the TlmPV C protein and the relevant molecular mechanisms have not been reported. Here, we show that the C protein is expressed in TlmPV-infected cells and negatively modulates viral RNA replication. The TlmPV C protein interacts with the P protein, negatively impacting the interaction between N and P, resulting in inhibition of viral RNA replication. Deletion mutagenesis studies indicate that the 50 amino-terminal amino acid residues of the C protein are dispensable for its inhibition of virus RNA replication and interaction with the P protein.IMPORTANCETailam paramyxovirus (TlmPV) is a newly identified paramyxovirus belonging to the Jeilongvirus genus, of which little is known. In this work, we confirmed the expression of the C protein in TlmPV-infected cells, assessed its function, and defined a potential mechanism of action. This is the first time that the existence of a Jeilongvirus C protein has been confirmed and its role in viral replication has been reported.


Assuntos
Paramyxovirinae , Proteínas Virais , Replicação Viral , Paramyxovirinae/genética , Paramyxovirinae/fisiologia , RNA Viral/genética , Proteínas Virais/genética , Animais , Cricetinae , Linhagem Celular
5.
Infect Immun ; 92(1): e0022923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099659

RESUMO

Legionella is a common intracellular parasitic bacterium that infects humans via the respiratory tract, causing Legionnaires' disease, with fever and pneumonia as the main symptoms. The emergence of highly virulent and azithromycin-resistant Legionella pneumophila is a major challenge in clinical anti-infective therapy. The CRISPR-Cas acquired immune system provides immune defense against foreign nucleic acids and regulates strain biological functions. However, the distribution of the CRISPR-Cas system in Legionella and how it regulates gene expression in L. pneumophila remain unclear. Herein, we assessed 915 Legionella whole-genome sequences to determine the distribution characteristics of the CRISPR-Cas system and constructed gene deletion mutants to explore the regulation of the system based on growth ability in vitro, antibiotic sensitivity, and intracellular proliferation of L. pneumophila. The CRISPR-Cas system in Legionella was predominantly Type II-B and was mainly concentrated in the genome of L. pneumophila ST1 strains. The Type II-B CRISPR-Cas system showed no effect on the strain's growth ability in vitro but significantly reduced resistance to azithromycin and decreased proliferation ability due to regulation of the lpeAB efflux pump and the Dot/Icm type IV secretion system. Thus, the Type II-B CRISPR-Cas system plays a crucial role in regulating the virulence of L. pneumophila. This expands our understanding of drug resistance and pathogenicity in Legionella, provides a scientific basis for the prevention of Legionnaires' disease outbreaks and the rational use of clinical drugs, and facilitates effective treatment of Legionnaires' disease.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/microbiologia , Azitromicina/farmacologia , Sistemas CRISPR-Cas , Legionella pneumophila/genética
6.
Stroke ; 55(1): 156-165, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037225

RESUMO

BACKGROUND: Stroke survivors with impaired balance and motor function tend to have relatively poor functional outcomes. The cerebellum and primary motor cortex (M1) have been suggested as targets for neuromodulation of balance and motor recovery after stroke. This study aimed to compare the efficacy and safety of intermittent theta-burst stimulation (iTBS) to the cerebellum or M1 on balance and motor recovery in patients with stroke. METHODS: In this randomized, double-blind, sham-controlled clinical trial, patients with subacute stroke were randomly divided into 3 groups: M1-, cerebellar-, and sham-iTBS (n=12 per group; 15 sessions, 3 weeks). All outcomes were evaluated before intervention (T0), after 1 week of intervention (T1), after 3 weeks of intervention (T2), and at follow-up (T3). The primary outcome was the Berg balance scale score at T2. Secondary outcomes include the Fugl-Meyer assessment scale for lower extremities, the trunk impairment scale, the Barthel index, the modified Rankin Scale, the functional ambulation categories, and cortical excitability. RESULTS: A total of 167 inpatients were screened, 36 patients (age, 57.50±2.41 years; 10 women, 12 ischemic) were enrolled between December 2020 and January 2023. At T2, M1- or cerebellar-iTBS significantly improved Berg balance scale scores by 10.7 points ([95% CI, 2.7-18.6], P=0.009) and 14.2 points ([95% CI, 1.2-27.2], P=0.032) compared with the sham-iTBS group. Moreover, the cerebellar-iTBS group showed a significantly greater improvement in Fugl-Meyer assessment scale for lower extremities scores by 5.6 points than the M1-iTBS ([95% CI, 0.3-10.9], P=0.037) and by 7.8 points than the sham-iTBS ([95% CI, 1.1-14.5], P=0.021) groups at T2. The motor-evoked potential amplitudes of the M1- and cerebellar-iTBS groups were higher than those of the sham-iTBS group (P<0.001). CONCLUSIONS: Both M1- and cerebellar-iTBS could improve balance function. Moreover, cerebellar-iTBS, but not M1-iTBS, induced significant effects on motor recovery. Thus, cerebellar-iTBS may be a valuable new therapeutic option in stroke rehabilitation programs. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2100047002.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana , Cerebelo
7.
J Am Chem Soc ; 146(32): 22455-22468, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39094119

RESUMO

Myeloid-derived suppressor cells (MDSCs) significantly hinder the immune response to tumor radiotherapy (RT) because of their massive accumulation in tumors after RT, resulting in immunosuppression and poor clinical prognosis. Herein, we developed an anti-PD-L1 antibody-conjugated iron oxide nanoprobe (Fe3O4-αPD-L1) to target and induce ferroptosis in MDSCs, thereby alleviating RT resistance. Overexpression of PD-L1 in MDSCs following RT enables noninvasive in vivo magnetic resonance and positron emission tomography imaging using 89Zr-labeled nanoprobes to track the movement of MDSCs and their infiltration into the tumor. After uptake by MDSCs that infiltrated the tumor, Fe3O4-αPD-L1 nanoprobes were mainly found within the lysosome and triggered the Fenton reaction, resulting in the generation of abundant reactive oxygen species. This process leads to ferroptosis of MDSCs, characterized by lipid peroxidation and mitochondrial dysfunction, and effectively reprograms the immunosuppressive environment within the tumor following RT. This study highlights a strategy for monitoring and regulating the fate of MDSCs to alleviate RT resistance and ultimately achieve improved treatment outcomes.


Assuntos
Ferroptose , Células Supressoras Mieloides , Ferroptose/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/patologia , Compostos Férricos/química , Linhagem Celular Tumoral
8.
Biochem Biophys Res Commun ; 690: 149248, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992526

RESUMO

Allelochemicals are specific secondary metabolites that can exhibit autotoxicity by inhibiting the growth of the same plant species that produced them. These metabolites have been found to affect various physical processes during plant growth and development, including inhibition of seed germination, photosynthesis, respiration, root growth, and nutrient uptake, with diverse mechanisms involving cell destruction, oxidative homeostasis and photoinhibition. In some cases, allelochemicals can also have positive effects on plant growth and development. In addition to their ecological significance, allelochemicals also possess potential as plant growth regulators (PGRs) due to their extensive physiological effects. However, a comprehensive summary of the development and applications of allelochemicals as PGRs is currently lacking. In this review, we present an overview of the sources and categories of allelochemicals, discuss their effects and the underlying mechanisms on plant growth and development. We showcase numerous instances of key phytohormonal allelochemicals and non-phytohormonal allelochemicals, highlighting their potential as candidates for the development of PGRs. This review aims to provide a theoretical basis for the development of economical, safe and effective PGRs utilizing allelochemicals, and emphasizes the need for further research in this area.


Assuntos
Feromônios , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Feromônios/metabolismo , Feromônios/farmacologia , Desenvolvimento Vegetal , Plantas/metabolismo , Fotossíntese
9.
Cancer Immunol Immunother ; 73(5): 91, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554157

RESUMO

BACKGROUND: Accumulation studies found that tumor-associated macrophages (TAMs) are a predominant cell in tumor microenvironment (TME), which function essentially during tumor progression. By releasing bioactive molecules, including circRNA, small extracellular vesicles (sEV) modulate immune cell functions in the TME, thereby affecting non-small cell lung cancer (NSCLC) progression. Nevertheless, biology functions and molecular mechanisms of M2 macrophage-derived sEV circRNAs in NSCLC are unclear. METHODS: Cellular experiments were conducted to verify the M2 macrophage-derived sEV (M2-EV) roles in NSCLC. Differential circRNA expression in M0 and M2-EV was validated by RNA sequencing. circFTO expression in NSCLC patients and cells was investigated via real-time PCR and FISH. The biological mechanism of circFTO in NSCLC was validated by experiments. Our team isolated sEV from M2 macrophages (M2Ms) and found that M2-EV treatment promoted NSCLC CP, migration, and glycolysis. RESULTS: High-throughput sequencing found that circFTO was highly enriched in M2-EV. FISH and RT-qPCR confirmed that circFTO expression incremented in NSCLC tissues and cell lines. Clinical studies confirmed that high circFTO expression correlated negatively with NSCLC patient survival. Luciferase reporter analysis confirmed that miR-148a-3p and PDK4 were downstream targets of circFTO. circFTO knockdown inhibited NSCLC cell growth and metastasis in in vivo experiments. Downregulating miR-148a-3p or overexpressing PDK4 restored the malignancy of NSCLC, including proliferation, migration, and aerobic glycolysis after circFTO silencing. CONCLUSION: The study found that circFTO from M2-EV promoted NSCLC cell progression and glycolysis through miR-148a-3p/PDK4 axis. circFTO is a promising prognostic and diagnostic NSCLC biomarker and has the potential to be a candidate NSCLC therapy target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Microambiente Tumoral
10.
J Org Chem ; 89(14): 9750-9754, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38940722

RESUMO

Herein, a photocatalytic umpolung strategy for reductive carboxylation of imines for the synthesis of α-amino acids was disclosed. Carbon dioxide radical anion (CO2•-) generated from formate is the key single electron reductant in the reactions. An unprecedentedly broad substrate scope of imines with excellent reaction yields was obtained with carbon dioxide (CO2) and formate salt as carbon sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA