RESUMO
Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
RESUMO
Decline in mitochondrial function underlies aging and age-related diseases, but the role of mitochondrial DNA (mtDNA) mutations in these processes remains elusive. To investigate patterns of mtDNA mutations, it is particularly important to quantify mtDNA mutations and their associated pathogenic effects at the single-cell level. However, existing single-cell mtDNA sequencing approaches remain inefficient due to high cost and low mtDNA on-target rates. In this study, we developed a cost-effective mtDNA targeted-sequencing protocol called single-cell sequencing by targeted amplification of multiplex probes (scSTAMP) and experimentally validated its reliability. We then applied our method to assess single-cell mtDNA mutations in 768 B lymphocytes and 768 monocytes from a 76-y-old female. Across 632 B lymphocyte and 617 monocytes with medium mtDNA coverage over >100×, our results indicated that over 50% of cells carried at least one mtDNA mutation with variant allele frequencies (VAFs) over 20%, and that cells carried an average of 0.658 and 0.712 such mutation for B lymphocytes and monocytes, respectively. Surprisingly, more than 20% of the observed mutations had VAFs of over 90% in either cell population. In addition, over 60% of the mutations were in protein-coding genes, of which over 70% were nonsynonymous, and more than 50% of the nonsynonymous mutations were predicted to be highly pathogenic. Interestingly, about 80% of the observed mutations were singletons in the respective cell populations. Our results revealed mtDNA mutations with functional significance might be prevalent at advanced age, calling further investigation on age-related mtDNA mutation dynamics at the single-cell level.
Assuntos
DNA Mitocondrial , Mitocôndrias , Feminino , Humanos , Reprodutibilidade dos Testes , Mutação , DNA Mitocondrial/genética , Mitocôndrias/genéticaRESUMO
As a sustainable approach for N2 fixation, electrocatalytic N2 reduction reaction (N2RR) to produce ammonia (NH3) is highly desirable with a precise understanding to the structure-activity relationship of electrocatalysts. Here, firstly, we obtain a novel carbon-supported oxygen-coordinated single-Fe-atom catalyst for highly efficient production of ammonia from electrocatalytic N2RR. Based on such new type of N2RR electrocatalyst, by combining operando X-ray absorption spectra (XAS) with density function theory calculation, we reveal significantly that the as-prepared active coordination structure undergoes a potential-driven two-step restructuring, firstly from FeSAO4(OH)1a to FeSAO4(OH)1a'(OH)1b with the adsorption of another -OH on FeSA at open-circuit potential (OCP) of 0.58 VRHE, and subsequently restructuring from FeSAO4(OH)1a'(OH)1b to FeSAO3(OH)1aâ³ due to the breaking of one Fe-O bond and the dissociation of one -OH at working potentials for final electrocatalytic process of N2RR, thus revealing the first potential-induced in situ formation of the real electrocatalytic active sites to boost the conversion of N2 to NH3. Moreover, the key intermediate of Fe-NNHx was detected experimentally by both operando XAS and in situ attenuated total reflection-surface-enhanced infrared absorption spectra (ATR-SEIRAS), indicating the alternating mechanism followed by N2RR on such catalyst. The results indicate the necessity of considering the potential-induced restructuring of the active sites on all kinds of electrocatalysts for such as highly efficient ammonia production from N2RR. It also paves a new way for a precise understanding to the structure-activity relationship of a catalyst and helps the design of highly efficient catalysts.
RESUMO
SignificanceHere, with single-molecule fluorescence microscopy, we study the catalytic behavior of individual Pt atoms at single-turnover resolution, and then reveal the unique catalytic properties of Pt single-atom catalyst and the difference in catalytic properties between individual Pt atoms and Pt nanoparticles. Further density functional theory calculation indicates that unique catalytic properties of Pt single-atom catalyst could be attributed intrinsically to the unique surface properties of Pt1-based active sites.
Assuntos
Nanopartículas , Platina , Catálise , Cinética , Platina/química , Propriedades de SuperfícieRESUMO
Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface CâO groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.
RESUMO
Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.
Assuntos
Celulose , Luz Solar , Raios Ultravioleta , Celulose/química , Bactérias , Têxteis , CorRESUMO
OBJECTIVE: The purpose of the study is to develop a prognosis nomogram for esophageal squamous cell carcinoma (ESCC) patients with radical resection and to identify patients who may benefit from postoperative adjuvant radiotherapy/chemoradiotherapy through survival risk stratification. METHODS: We retrospectively enrolled patients who underwent esophagectomy in the First Affiliated Hospital of Nanjing Medical University from July 2015 to June 2017. Patients with stage I-III esophageal squamous cell carcinoma who received radical R0 resection with or without postoperative adjuvant radiotherapy/chemoradiotherapy were included. Further, patients were randomly allocated into two groups (training and validation cohorts) with a distribution ratio of 7:3. The prognosis nomogram was constructed based on independent factors determined by univariate and multivariate Cox analyses. The area under the receiver operating characteristic curve (AUC) and calibration curve were adopted to evaluate the discriminative ability and reliability of the nomogram. The accuracy and clinical practicability were respectively assessed by C-index values and decision curve analysis (DCA), and further contrasted the nomogram model and the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system. In addition, survival risk stratification was further performed according to the nomogram, and the effect of postoperative adjuvant therapy on each risk group was appraised by the Kaplan-Meier survival analysis. RESULTS: A total of 399 patients with esophageal squamous cell carcinoma were recruited in this study, including the training cohort (n = 280) and the validation cohort (n = 119). The nomogram-related AUC values ââfor 1, 3, and 5-year OS were 0.900, 0.795, and 0.802, respectively, and 0.800, 0.865, 0.829 in the validation cohort, respectively. The slope of the calibration curve for both cohorts was close to 1, indicating good consistency. The C-index value of the nomogram was 0.769, which was higher than that of the AJCC 8th TNM staging system by 0.061 (p < 0.001). Based on the prognosis nomogram, patients were stratified into three risk groups (low, medium, and high), and there were obvious differences in prognosis among the groups (p < 0.001). Furthermore, postoperative adjuvant therapy has been shown to enhance the 5-year survival rate by over 15% among patients classified as medium- and high-risk. CONCLUSION: The constructed nomogram as developed resulted in accurate and effective prediction performance in survival outcomes for patients with stage I-III esophageal squamous cell carcinoma who underwent radical R0 resection, which is superior to the AJCC 8th TNM staging system. The survival risk stratification had potential clinical application to guide further personalized adjuvant therapy.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esofagectomia , Nomogramas , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/cirurgia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Estudos Retrospectivos , Prognóstico , Idoso , Medição de Risco/métodos , Radioterapia Adjuvante , Estadiamento de Neoplasias , Quimiorradioterapia Adjuvante/métodos , Curva ROC , Estimativa de Kaplan-Meier , AdultoRESUMO
To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is reliable. Herein, based on reported model electrocatalysts for acidic CO2RR, by monitoring the varying of pH and alkali cation (K+) concentration along with the CO2RR performance in initially acidic electrolyte solution (K2SO4 with pH = 3.5), we unveil their remarkable CO2RR performance along with the rapid pH increase up to 9.5 in the cathode chamber and decrease down to 2.4 in the anode chamber due to the diffusion of K+ along with protons through the proton exchange membrane from the anode to the cathode chamber. We further reveal the rapid collapse of their CO2RR performance in a constant acid solution. This means that some previously reported "remarkable acidic CO2RR performances" actually originate from the alkaline rather than acidic electrolyte, and the conclusions made in such work need to be reconsidered. We also summarize the actual relationship between the CO2RR performance and catholyte pH in widely used Bi- and Sn-based catalysts. This work provides deeper insights into the stability of acidity and the pH effect on electrocatalysts for the CO2RR.
RESUMO
Genome-wide association study (GWAS) is a powerful tool to identify genomic loci underlying complex traits. However, the application in natural populations comes with challenges, especially power loss due to population stratification. Here, we introduce a bivariate analysis approach to a GWAS dataset of Arabidopsis thaliana. We demonstrate the efficiency of dual-phenotype analysis to uncover hidden genetic loci masked by population structure via a series of simulations. In real data analysis, a common allele, strongly confounded with population structure, is discovered to be associated with late flowering and slow maturation of the plant. The discovered genetic effect on flowering time is further replicated in independent datasets. Using Mendelian randomization analysis based on summary statistics from our GWAS and expression QTL scans, we predicted and replicated a candidate gene AT1G11560 that potentially causes this association. Further analysis indicates that this locus is co-selected with flowering-time-related genes. The discovered pleiotropic genotype-phenotype map provides new insights into understanding the genetic correlation of complex traits.
Assuntos
Arabidopsis , Flores , Estudo de Associação Genômica Ampla , Fenótipo , Locos de Características Quantitativas , Arabidopsis/genética , Estudo de Associação Genômica Ampla/métodos , Flores/genética , Polimorfismo de Nucleotídeo Único , Genótipo , Modelos Genéticos , Genética Populacional , Simulação por Computador , Alelos , Genoma de Planta , Análise da Randomização MendelianaRESUMO
The current standard treatment for locally advanced squamous cell carcinoma of the head and neck (LASCCHN) comprises concurrent radiotherapy (CRT) alongside platinum-based chemotherapy. However, innovative therapeutic alternatives are being evaluated in phase II/III randomized trials. This study employed a Bayesian network meta-analysis (NMA) using fixed effects to provide both direct and indirect comparisons of all existing treatment modalities for unresectable LASCCHN. METHODS: We referenced randomized controlled trials (RCTs) from January 2000 to July 2023 by extensively reviewing PubMed, EMBASE, and Web of Science databases, adhering to the Cochrane methodology. Relevant data, including summary estimates of overall survival (OS) and progression-free survival (PFS), were extracted from these selected studies and recorded in a predefined database sheet. Subsequently, we conducted a random effects network meta-analysis using a Bayesian framework. RESULTS: Based on the Surface Under the Cumulative Ranking (SUCRA) values, the league table organizes the various treatments for OS in the following order: IC + RT&MTT, MTT-CRT, IC + CRT&MTT, CRT, IC + CRT, MTT-RT, IC + MTT-RT, and RT. In a similar order, the treatments rank as follows according to the league table: IC + CRT&MTT, MTT-CRT, IC + CRT, IC + RT&MTT, CRT, IC + MTT-RT, MTT-RT, and RT. Notably, none of these treatments showed significant advantages over concurrent chemoradiotherapy. CONCLUSION: Despite concurrent chemoradiotherapy being the prevailing treatment for LASCCHN, our findings suggest the potential for improved outcomes when concurrent chemoradiotherapy is combined with targeted therapy or induction chemotherapy.
The current standard treatment for advanced head and neck cancer involves combining radiation therapy with chemotherapy. However, there are ongoing trials exploring alternative therapies. In this study, we conducted a comprehensive analysis of existing treatments using a statistical method called network meta-analysis. Our analysis included data from randomized controlled trials published between January 2000 and July 2023. We focused on overall survival and progression-free survival as key outcome measures. The results of our analysis showed that none of the alternative treatments demonstrated significant advantages over the standard concurrent chemoradiotherapy. Nevertheless, there is potential for improved outcomes when targeted therapy or induction chemotherapy is combined with concurrent chemoradiotherapy.
Assuntos
Neoplasias de Cabeça e Pescoço , Metanálise em Rede , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Quimiorradioterapia/métodos , Teorema de Bayes , Ensaios Clínicos Controlados Aleatórios como Assunto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
Comparison of the structural features and catalytic performance of bimetallic nanocatalysts will help to develop a unified understanding of structure-reaction relationships. The single-molecule fluorescence technique was utilized to reveal the differences in catalytic kinetics among PtRu bimetallic nanocatalysts and Pt and Ru monometallic nanocatalysts at the single particle level. The results show that bimetallic nanocatalysts have higher apparent rate constants and desorption rate constants relative to monometallic nanocatalysts, which leads to their higher catalytic activity. At the single particle level, bimetallic nanocatalysts have a wider distribution of apparent rate constants, suggesting that bimetallic nanocatalysts have higher activity heterogeneity relative to monometallic nanocatalysts. By investigating the relationship between the reaction rate and the rate of dynamic activity fluctuations, it was found that spontaneous surface restructuring and reaction-induced surface restructuring of nanoparticles occurred. The surface of bimetallic nanoparticles restructured faster, which made the bimetallic nanocatalysts more active. These findings provide new insights into the design of highly active bimetallic nanocatalysts.
RESUMO
Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.
Assuntos
Valvas Cardíacas , Hidrogéis , Ratos Sprague-Dawley , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Anisotropia , Ratos , Hidrogéis/química , Materiais Biocompatíveis/química , Próteses Valvulares Cardíacas , Poliésteres/química , Células Cultivadas , Humanos , Matriz Extracelular/química , MasculinoRESUMO
Sensor degradation and failure often undermine users' confidence in adopting a new data-driven decision-making model, especially in risk-sensitive scenarios. A risk assessment framework tailored to classification algorithms is introduced to evaluate the decision-making risks arising from sensor degradation and failures in such scenarios. The framework encompasses various steps, including on-site fault-free data collection, sensor failure data collection, fault data generation, simulated data-driven decision-making, risk identification, quantitative risk assessment, and risk prediction. Leveraging this risk assessment framework, users can evaluate the potential risks of decision errors under the current data collection status. Before model adoption, ranking risk sensitivity to sensor data provides a basis for optimizing data collection. During the use of decision algorithms, considering the expected lifespan of sensors enables the prediction of potential risks the system might face, offering comprehensive information for sensor maintenance. This method has been validated through a case study involving an access control.
RESUMO
Combining a strong second-order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2â eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase-matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the "shoulder-to-shoulder" one-dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90â eV and a UV cutoff edge of 342â nm, however, it possesses a large birefringence (0.35@546â nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10â times that of KDP). Furthermore, it has a wide band gap (4.74â eV), short UV cutoff edge (234â nm), and moderate birefringence capable of phase matching (0.17@546â nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.
RESUMO
Phase engineering is a critical strategy in electrocatalysis, as it allows for the modulation of electronic, geometric, and chemical properties to directly influence the catalytic performance. Despite its potential, phase engineering remains particularly challenging in thermodynamically stable perovskites, especially in a 2D structure constraint. Herein, we report phase engineering in 2D LaNiO3 perovskite using the strongly non-equilibrium microwave shock method. This approach enables the synthesis of conventional hexagonal and unconventional trigonal and cubic phases in LaNiO3 by inducing selective phase transitions at designed temperatures, followed by rapid quenching to allow precise phase control while preserving the 2D porous structure. These phase transitions induce structural distortions in the [LaO]+ layers and the hybridization between Ni 3d and O 2p states, modifying local charge distribution and enhancing electron transport during the six-electron urea oxidation process (UOR). The cubic LaNiO3 offers optimal electron transport and active site accessibility due to its high structural symmetry and open interlayer spacing, resulting in a low onset potential of 1.27â V and a Tafel slope of 33.1â mV dec-1 for UOR, outperforming most current catalysts. Our strategy features high designability in phase engineering, enabling various electrocatalysts to harness the power of unconventional phases.
RESUMO
The manipulation of electron donor/acceptor (D/A) shows an endless impetus for innovating optical materials. Currently, there is booming development in electron donor design, while research on electron acceptor engineering has received limited attention. Inspired by the philosophical idea of "more is different", two systems with D'-D-A-D-D' (1A system) and D'-D-A-A-D-D' (2A system) structures based on acceptor engineering were designed and studied. It was demonstrated that the 1A system presented a weak aggregation-induced emission (AIE) to aggregation-caused quenching (ACQ) phenomenon, along with the increased acceptor electrophilicity and planarity. In sharp contrast, the 2A system with one more acceptor exhibited an opposite ACQ-to-AIE transformation. Interestingly, the fluorophore with a more electron-deficient A-A moiety in the 2A system displayed superior AIE activity. More importantly, all compounds in the 2A system showed significantly higher molar absorptivity (ε) in comparison to their counterparts in the 1A system. Thanks to the highest ε, near-infrared-II (NIR-II, 1000-1700 nm) emission, desirable AIE property, favorable reactive oxygen species (ROS) generation, and high photothermal conversion efficiency, a representative member of the 2A system handily performed in fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal collaborative therapy for efficient tumor elimination. Meanwhile, the NIR-II fluorescence imaging of blood vessels and lymph nodes in living mice was also accomplished. This study provides the first evidence that the dual-connected acceptor tactic could be a new molecular design direction for the AIE effect, resulting in high ε, aggregation-intensified NIR-II fluorescence emission, and improved ROS and heat generation capacities of phototheranostic agents.
Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Espécies Reativas de Oxigênio , Imagem Óptica , Corantes Fluorescentes/química , Nanomedicina Teranóstica/métodos , Nanopartículas/químicaRESUMO
Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.
Assuntos
Nanopartículas Metálicas , Mimetismo Molecular , Peroxidase/química , Peroxidase/metabolismo , Nanopartículas Metálicas/química , Platina/química , Prata/química , Ligas/químicaRESUMO
BACKGROUND: Osteoporosis (OP) is a common bone disease marked by decreased bone strength. Increasing evidence suggests that long non-coding RNA (lncRNAs) play important roles in the occurrence and progression of OP. This study aimed to investigate the role and mechanism of LINC00205 in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and OP. METHODS: Bone tissue samples were obtained from healthy controls and patients with osteoporosis with a spinal fracture (OP-Frx) or without a spinal fracture (OP-no-Frx). HMSCs were cultured and induced to undergo osteogenic differentiation. The expression of LINC00205, lysine (K)-specific methyltransferase 2C (KMT2C), and miR-26b-5p in bone tissues and cells was evaluated using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effects of LINC00205, miR-26b-5p, and KMT2C on calcium deposition, alkaline phosphatase (ALP) activity, and mRNA levels of the osteogenic differentiation marker genes [ALP, osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2)] were investigated using alizarin red S staining, an ALP activity assay, and qRT-PCR, respectively. Dual-luciferase reporter assay was performed to ascertain the binding relationship between miR-26b-5p and LINC00205/KMT2C. RESULTS: LINC00205 and KMT2C were upregulated in patients with OP-Frx and OP-no-Frx, whereas miR-26b-5p was downregulated. Furthermore, LINC00205 and KMT2C expression decreased, whereas that of miR-26b-5p increased over time from day 7 to 21 of the osteogenic differentiation of hMSCs. The knockdown of LINC00205 and KMT2C significantly increased ALP activity, calcium deposition, and the expression of RUNX2, ALP, and OCN. In contrast, the inhibition of miR-26b-5p yielded the opposite result. These data suggest that LINC00205 inhibits the osteogenic differentiation of hMSCs by modulating the miR-26b-5p/KMT2C signaling axis. CONCLUSION: LINC00205 promotes OP and is involved in spinal fractures. LINC00205 is also a potential negative regulator of the osteogenic differentiation of hMSCs.
Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Fraturas da Coluna Vertebral , Humanos , Cálcio , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , RNA Longo não Codificante/genética , Fraturas da Coluna Vertebral/genéticaRESUMO
Integrating the ultralong excitation wavelength, high extinction coefficient, and prominent photothermal conversion ability into a single photothermal agent is an appealing yet significantly challenging task. Herein, a precise dual-acceptor engineering strategy is exploited for this attempt based on donor-acceptor (D-A) type semiconductor polymers by subtly regulating the molar proportions of the two employed electron acceptor moieties featuring different electronic affinity and π-conjugation degrees, and making full use of the active intramolecular motion-induced photothermal effect. The optimal polymer SP4 synchronously shows desirable second near-infrared (NIR-II) absorption, an extremely high extinction coefficient, and satisfactory photothermal conversion behavior. Consequently, the unprecedented performance of SP4 NPs on 1064â nm laser-excited photoacoustic imaging (PAI)-guided photothermal therapy (PTT) is demonstrated by the precise tumor diagnosis and complete tumor elimination.
RESUMO
Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH- ) around them induced by the much fast consumption of OH- on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.