Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543083

RESUMO

Intestinal mucositis (IM) is a common adverse effect of chemotherapy, limiting its clinical application. Codonopsis pilosula-derived CP-A (an inulin-type fructan) is an edible Chinese medicine with anti-inflammatory and gastrointestinal protective effects, which may be useful for treating IM. Here, we explored CP-A's role in ameliorating IM induced by 5-fluorouracil (5-FU) and investigated the underlying mechanism using in vitro experiments and rat models. Western blotting, immunohistochemistry (IHC), and real-time PCR (RT-PCR) analyses were used to assess protein expression related to the extracellular-regulated protein kinases (ERK)/myosin light chain kinase (MLCK)/myosin light chain 2 (MLC2) signaling pathway and tight junction proteins. Inflammatory factors were quantified using enzyme-linked immunosorbent assays (ELISAs), and 16S rRNA amplicon sequencing was employed for cecum content analysis. The results indicated that CP-A restored body weight and food intake and reversed histopathological changes in IM rats. Further, abnormal MLCK activation induced by 5-FU was attenuated by CP-A via the ERK/MLCK/MLC2 pathway. CP-A treatment improved tight junction protein levels and reduced inflammatory factor expression. Moreover, CP-A intervention regulated the intestinal microbiota community structure, increasing the abundance of Lactobacillus and decreasing the abundance of Shigella. In conclusion, CP-A mitigates 5-FU-induced IM by inhibiting the ERK/MLCK/MLC2 pathway, reducing the expression of inflammatory factors, improving the intestinal mucosal barrier, and regulating the intestinal microbial community. This study highlights CP-A's therapeutic potential in IM treatment and provides insights for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA