Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25290-25307, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237062

RESUMO

We propose a linear laser triangulation measurement system using Scheimpflug calibration based on the Monte Carlo optimization strategy. A Scheimpflug inclination camera calibration model is introduced in the measurement system for improving the image definition in small-range measurements with a large depth-of-field. To address the nonlinear optimization problem between the instrument resolution and measurement range, the Monte Carlo method is adopted to determine the optimal optical parameters (scattering angle, Scheimpflug angle, and focus length) in a practical measurement system. Furthermore, we experimentally constructed the measurement system to demonstrate the measurement precision by measuring a standard step block (measurement range 15 mm). The performance parameters of the maximum measurement error, maximum standard deviation, and linearity are obtained as ±7 µm, 0.225 µm, and 0.046%, respectively. Finally, the proposed measurement system based on the Monte Carlo optimization strategy is promising for high-precision measurements in industrial applications and provides guidance for optimizing the design parameters of ranging measurement sensors.

2.
Opt Express ; 29(14): 21113-21128, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265905

RESUMO

We investigate a novel two-channel grating encoder that can perform simultaneous measurements of six-degree-of-freedom (DOF) motions of two adjacent sub-components of synthetic-aperture optics such as pulse-compression gratings(PCGs) and telescope-primary mirrors. The grating encoder consists of a reading head and two separate gratings, which are attached to the back of the sub-components, respectively. The reading head is constructed such that there two identical optical probes can share the same optical components. The two probes are guided to hit each of the two gratings and can detect six-DOF motions simultaneously and independently. For each probe, the incident beam propagates through both a three-axes grating interferometry module and a three-axes diffraction integrated autocollimator-module, which detects translational and rotational movement, respectively. By combining the two modules it is possible to perform six-DOF measurement for a single point. The common-path configuration of the two probes enable identical responses to environmental variation, which ensures high accuracy.

3.
Appl Opt ; 60(30): 9358-9364, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807072

RESUMO

The design, fabrication, and demonstration of a planar two-dimensional-crossed reflective diffractive grating are proposed to construct a novel optical configuration, to the best of our knowledge, potentially applied for atom cooling and trapping in a magneto-optical trap. Based on the proposed single-beam single-exposure scheme by means of an orthogonal two-axis Lloyd's mirrors interferometer, we rapidly patterned a ∼1µm period grating capable of providing a uniform intensity of the diffracted beams. The key structural parameters of the grating including the array square hole's width and depth were determined, aiming at providing a high energy of the diffracted beams to perform the atom cooling and trapping. To guarantee the diffracted beams to be overlapped possibly, we adopted a polarized beam splitter to guide the optical path of the incident and zero-order diffracted beams. Therefore, one zero-order diffracted beam with a retroreflected mode and four first-order diffracted beams with appropriate optical path constructed a three-dimensional optical configuration of three orthogonal pairs of counterpropagating beams. Finally, three pairs of the counterpropagating cooling laser beams with 9 mm diameter and >10% diffraction efficiencies were achieved, and the circular polarization chirality, purity, and compensation of the desired diffracted beams are further evaluated, which preliminarily validated a high applicability for the magneto-optical trap system.

4.
Opt Express ; 28(2): 2179-2191, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121913

RESUMO

A two-axis Lloyd's mirrors interferometer based optical fabrication system was theoretically investigated and constructed for patterning high-uniformity nanoscale crossed grating structures over a large area with a high throughput. The current interferometer was configured with two reflected mirrors and a grating holder, which are placed edge by edge and orthogonal with each other. In such a manner, the two beams reflected from the two mirrors interfere with the incident beam, respectively, forming a crossed grating patterns with only one exposure. Differing from the conventional solution for elimination of unexpected interference between the two reflected beams, a systematical analysis, that is based on the proposed index indicating the non-orthogonality between the two beams at different incident angles, was conducted by using a spatial full polarization tracing method. Without polarization modulation to eliminate the additional interference, an optimal exposure condition with small non-orthogonality between reflected beams was found at a certain incident angle range, while the two required interferences to construct cross grating still remain high. A pattern period of ∼1 µm-level crossed grating structure could be obtained through balancing the structure area and the non-orthogonality. Finally, the exposure setup with orthogonal two-axis Lloyd's mirrors interferometer is established, and the crossed grating structure with the periods of 1076 nm along X-direction and 1091 nm along Y-direction was successfully fabricated on a silicon substrate via microfabrication technology over a large area of 400 mm2. The uniformity of crossed grating array over the whole area was evaluated by an atomic force microscope, and the standard deviations of structure periods along X- and Y-directions smaller than 0.3% are achieved. It is demonstrated that the orthogonal two-axis Lloyd's mirrors interferometer based on single-beam single-exposure scheme with non-orthogonality systematic analysis is an effective approach to fabricate crossed grating patterns of 1 µm-level period with high uniformity over a large area.

5.
Nanotechnology ; 31(21): 215408, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32040949

RESUMO

The high efficiency of quantum dot-sensitized solar cells (QDSSCs) is a benefit of the highly efficient photoinduced-electron transfer (PET) to external electrodes. Here, we investigated how the surface defects and conduction-band (CB) offsets between core and shell materials affect the PET from CuInS2 quantum dots (QDs) by means of time-resolved femtosecond transient absorption and nanosecond photoluminescence spectroscopy. The transfer of 1S excited electrons from CuInS2 QDs to TiO2 films is demonstrated and we find that the surface-electron trapping can significantly reduce the efficiency of the PET. Though the electron trapping can be suppressed after ZnS surface passivation, the PET decreases significantly to a low efficiency of ∼33% from the type I CuInS2/ZnS core/shell QDs because of their low electron density at the surface of the QDs. The surface-electron density is increased with the strategy of wavefunction engineering by reducing the CB offset, which allows us to achieve a quasi-type II carrier confinement in CuInS2/CdS core/shell QDs. The PET efficiency appears to be as high as ∼95% from the CuInS2/CdS core/shell QDs, which is ascribed to synergistic effects of the surface passivation and enhanced delocalization of the electron wavefunction from the CuInS2 core to the CdS shell. Finally, we demonstrate that these new mechanistic understandings of the PET processes are crucial to improving the efficiency of CuInS2 QDSSCs.

6.
Micromachines (Basel) ; 13(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014209

RESUMO

This study presents an experimental demonstration of the motion characteristics of a comb-drive actuator fabricated from heterogeneous structure and applied for cryogenic environments. Here, a silicon wafer is anodically bonded onto a glass substrate, which is considered to be a conventional heterogeneous structure and is commonly adopted for fabricating comb-drive actuators owing to the low-cost fabrication. The displacement sensor, also with comb-finger configuration, is utilized to monitor the motion characteristics in real time at low temperatures. The irregular motions, including displacement fluctuation and lateral sticking, are observed at specific low temperatures. This can be attributed to the different thermal expansion coefficients of two materials in the heterogeneous structure, further leading to structural deformation at low temperatures. The support spring in a comb-drive actuator is apt to be deformed because of suspended flexible structures, which affect the stiffness of the support spring and generate irregular yield behavior. The irregular yield behavior at low temperatures can be constrained by enhancing the stiffness of the support spring. Finally, we reveal that there are limited applications of the heterogeneous-structure-based comb-drive actuator in cryogenic environments, and simultaneously point out that the material substrate of silicon on the insulator is replaceable based on the homogeneous structure with a thin SiO2 layer.

7.
Microsyst Nanoeng ; 7: 31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567745

RESUMO

Periodic microscale array structures play an important role in diverse applications involving photonic crystals and diffraction gratings. A polarized holographic lithography system is proposed for patterning high-uniformity microscale two-dimensional crossed-grating structures with periodic tunability. Orthogonal two-axis Lloyd's mirror interference and polarization modulation produce three sub-beams, enabling the formation of two-dimensional crossed-grating patterns with wavelength-comparable periods by a single exposure. The two-dimensional-pattern period can also be flexibly tuned by adjusting the interferometer spatial positioning. Polarization states of three sub-beams, defining the uniformity of the interference fringes, are modulated at their initial-polarization states based on a strict full polarization tracing model in a three-dimensional space. A polarization modulation model is established considering two conditions of eliminating the unexpected interference and providing the desired identical interference intensities. The proposed system is a promising approach for fabricating high-uniformity two-dimensional crossed gratings with a relatively large grating period range of 500-1500 nm. Moreover, our rapid and stable approach for patterning period-tunable two-dimensional-array microstructures with high uniformity could be applicable to other multibeam interference lithography techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA