Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570599

RESUMO

The control of alumina morphology is crucial yet challenging for its various applications. Unfortunately, traditional methods for preparing alumina particles suffer from several limitations such as irregular morphology, poor dispersibility, and restricted application areas. In this study, we develop a novel method for preparing spherical mesoporous alumina using chitin and Pluronic P123 as mixed templates. The effects of reaction temperature, time, and the addition of mixed templates on the phase structure, micromorphology, and optical absorption properties of the samples were investigated. The experimental results indicate that lower temperature and shorter reaction time facilitated the formation of spherical mesoporous alumina with excellent CO2 adsorption capacity. The periodic density functional theory (DFT) calculations demonstrate that both the (110) and (100) surfaces of γ-Al2O3 can strongly adsorb CO2. The difference in the amount of CO2 adsorbed by Al2O3 is mainly due to the different surface areas, which give different numbers of exposed active sites. This approach introduces a novel strategy for utilizing biological compounds to synthesize spherical alumina and greatly enhances mesoporous alumina's application efficiency in adsorption fields. Moreover, this study explored the electrochemical performance of the synthesized product using cyclic voltammetry, and improved loading of electrocatalysts and enhanced electrocatalytic activity were discovered.

2.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687630

RESUMO

The sapphire crystal, the most commonly used LED substrate material, has excellent optical and chemical properties and has rapidly developed in recent years. However, the challenge of growing large-size sapphire crystals remains. This paper presents a novel approach using alumina nanoparticles synthesized with abietic acid as a template to enhance sapphire growth via the heat exchange method. This study explores the effects of temperature, time, and template amount on the structure and morphology of the synthesized alumina nanoparticles. The results show that the morphology of the raw material, particularly spherical alumina nanoparticles, positively affects the quality and yield stability of sapphire products. Furthermore, the light output power of GaN-based LED chips made with the experimentally fabricated sapphire substrate increased from 3.47 W/µm2 to 3.71 W/µm2, a 6.9% increase compared to commercially available sapphire substrates. This research highlights the potential of using abietic acid as a template for alumina nanoparticle synthesis and their application in sapphire growth for LED production.

3.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885507

RESUMO

Carbon nano-materials have been widely used in many fields due to their electron transport, mechanics, and gas adsorption properties. This paper introduces the structure and properties of carbon nano-materials the preparation of carbon nano-materials by chemical vapor deposition method (CVD)-which is one of the most common preparation methods-and reaction simulation. A major factor affecting the material structure is its preparation link. Different preparation methods or different conditions will have a great impact on the structure and properties of the material (mechanical properties, electrical properties, magnetism, etc.). The main influencing factors (precursor, substrate, and catalyst) of carbon nano-materials prepared by CVD are summarized. Through simulation, the reaction can be optimized and the growth mode of substances can be controlled. Currently, numerical simulations of the CVD process can be utilized in two ways: changing the CVD reactor structure and observing CVD chemical reactions. Therefore, the development and research status of computational fluid dynamics (CFD) for CVD are summarized, as is the potential of combining experimental studies and numerical simulations to achieve and optimize controllable carbon nano-materials growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA