Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
1.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781259

RESUMO

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/genética , Camundongos , Humanos , Progressão da Doença , Proteínas Virais/genética , Proteínas Virais/metabolismo , Pulmão/virologia , Pulmão/patologia , Replicação Viral , Pneumonia/virologia , Pneumonia/patologia , Chlorocebus aethiops , Mutação , Células Vero , Feminino
2.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28735899

RESUMO

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Assuntos
Adenosina Trifosfatases/metabolismo , Células-Tronco Embrionárias/enzimologia , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA , Eucromatina/genética , Eucromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genótipo , Heterocromatina/genética , Heterocromatina/metabolismo , Fenótipo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Transfecção
3.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36040867

RESUMO

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Proteínas Virais Reguladoras e Acessórias , Virulência , COVID-19/virologia , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais Reguladoras e Acessórias/genética , Virulência/genética , Replicação Viral/genética
4.
Genes Dev ; 31(3): 241-246, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270516

RESUMO

Chromobox homolog 3 (Cbx3/heterochromatin protein 1γ [HP1γ]) stimulates cell differentiation, but its mechanism is unknown. We found that Cbx3 binds to gene promoters upon differentiation of murine embryonic stem cells (ESCs) to neural progenitor cells (NPCs) and recruits the Mediator subunit Med26. RNAi knockdown of either Cbx3 or Med26 inhibits neural differentiation while up-regulating genes involved in mesodermal lineage decisions. Thus, Cbx3 and Med26 together ensure the fidelity of lineage specification by enhancing the expression of neural genes and down-regulating genes specific to alternative fates.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Complexo Mediador/metabolismo , Células-Tronco Neurais/citologia , Animais , Células Cultivadas , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/metabolismo , Complexo Mediador/genética , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética
5.
Nutr Metab Cardiovasc Dis ; 34(7): 1631-1638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653673

RESUMO

BACKGROUND AND AIMS: It has been reported that maresin 1 (MaR1) is able to protect against the development of atherogenesis in cellular and animal models. This study was performed to investigate whether plasma MaR1 is associated with the risk of atherosclerotic cardiovascular disease (ASCVD) at the population level. METHODS AND RESULTS: The study included 2822 non-ASCVD participants from a community-based cohort who were followed for about 8 years. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for ASCVD events according to baseline MaR1 quartiles were calculated using the Cox proportional hazards model. During follow-up, a total of 290 new ASCVD cases were identified. The restricted cubic spline analysis indicated a linear dose-response association between plasma MaR1 and incident ASCVD. In addition, the adjusted-HR (95% CI) for ASCVD events associated with one standard deviation increase in MaR1 was 0.79 (0.68-0.91). Moreover, the adjusted-HRs (95% CIs) for ASCVD events associated with the second, third and fourth quartiles versus the first quartile of plasma MaR1 were 1.00, 1.04 (0.76, 1.42), 0.88 (0.64, 1.22) and 0.58 (0.41, 0.84), respectively. Mediation analyses showed that the association between MaR1 and incident ASCVD was partially mediated by small dense low-density lipoprotein cholesterol, with a mediation proportion of 9.23%. Further, the net reclassification improvement and integrated discrimination improvement of ASCVD risk were significantly improved when MaR1 was added to basic model established by conventional risk factors (all p < 0.01). CONCLUSIONS: Elevated plasma MaR1 concentrations are associated with a lower risk of ASCVD development.


Assuntos
Aterosclerose , Biomarcadores , Ácidos Docosa-Hexaenoicos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Aterosclerose/epidemiologia , Aterosclerose/sangue , Aterosclerose/diagnóstico , Medição de Risco , Incidência , China/epidemiologia , Biomarcadores/sangue , Idoso , Fatores de Tempo , Ácidos Docosa-Hexaenoicos/sangue , Adulto , Prognóstico , Estudos Prospectivos , Fatores de Risco , Fatores de Proteção , População do Leste Asiático
6.
J Environ Manage ; 361: 121197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820791

RESUMO

Heavy metal pollution of agricultural soil is a major global concern, prompting the establishment of maximum allowable limits (MALs) to ensure food safety and protect human health. This study collected and compared MALs for six heavy metals (As, Cd, Hg, Pb, Zn, and Cu) in agricultural soils from representative countries and organizations (EU and WHO/FAO). The research evaluated the critical health risks and efficacy of these MALs under the hypothetical scenario of metals concentrations reaching the maximum allowable level. Safe thresholds for heavy metals were then derived based on maximum acceptable health risk levels. The comparative analysis revealed significant variations in the specific limit values and terms of MALs across countries and organizations, even for the same metal. This suggests that there is no consensus among countries and organizations regarding the level of metal-related health risks. Furthermore, the risk analysis of metal concentrations reaching the maximum level accentuated heightened risks associated with As, suggesting that the current risk of soil As exposure was underestimated, particularly for children. However, soil Cu, Cd, and Zn limits generally resulted in low health risks, implying that the current limits may overestimate their hazard. Overall, the results highlight that the current MALs for soil heavy metals may not fully safeguard human health. There is a critical need to optimize current soil MALs based on localized risks and the actual impact of these metals on human health. It is suggested to appropriately lower the limits of metals (such as As) whose impact on health risks is underestimated, and cautiously increase the limits of metals (such as Cu, Cd, and Zn) that currently pose minor health risks. This approach aims to reduce both over and insufficient protection problems of soil heavy metal MALs, emphasizing the importance of considering the locality in setting these limits.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Monitoramento Ambiental
7.
Purinergic Signal ; 19(1): 69-85, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113324

RESUMO

Our and in vitro studies had confirmed that mechanosensitive ATP release and accumulation in acupoints was elicited by acupuncture (AP), which might be a pivotal step for triggering AP analgesia. But to date, the dynamics of extracellular ATP (eATP) in the interstitial space during AP process was poorly known, mainly due to the low temporal resolution of the current detection approach. This study attempted to capture rapid eATP signals in vivo in the process of needling, and further explored the role of this eATP mobilization in initiating AP analgesic effect. Ipsilateral 20-min needling was applied on Zusanli acupoint (ST36) of complete Freund's adjuvant (CFA)-induced ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in the interstitial space was microdialyzed and real-time quantified by luciferin-luciferase assay at 1-min interval with the aid of the microfluid chip. We revealed in behavioral tests that modulation of eATP levels in ST36 influenced AP analgesic effect on ankle arthritis. A transient eATP accumulation was induced by needling that started to mobilize at 4 min, climbed to the peak of 11.21 nM within 3.25 min and gradually recovered. Such AP-induced eATP mobilization was significantly impacted by ankle inflammation, needling depth, needle manipulation, and the presence of local ecto-nucleotidases. This work reveals that needling elicits a transient eATP mobilization in acupoints, which contributes to initiating AP analgesia. This study will help us better understand the peripheral mechanism of AP analgesia and guide clinicians to optimize the needle manipulations to improve AP efficacy.


Assuntos
Analgesia por Acupuntura , Terapia por Acupuntura , Artrite , Ratos , Animais , Pontos de Acupuntura , Analgésicos , Trifosfato de Adenosina
8.
Mol Cell ; 60(3): 342-3, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26545072

RESUMO

In this issue of Molecular Cell, Kubik et al. (2015) describe how the RSC chromatin remodeling complex collaborates with two DNA sequence motifs and sequence-specific general regulatory factors to assemble fragile nucleosomes at highly transcribed yeast Pol II promoters, and they distinguish these from promoters bearing stable nucleosomes.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo
9.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203082

RESUMO

Monitoring the biochemical pigment contents in individual plants is crucial for assessing their health statuses and physiological states. Fast, low-cost measurements of plants' biochemical traits have become feasible due to advances in multispectral imaging sensors in recent years. This study evaluated the field application of proximal multispectral imaging combined with feature selection and regressive analysis to estimate the biochemical pigment contents of poplar leaves. The combination of 6 spectral bands and 26 vegetation indices (VIs) derived from the multispectral bands was taken as the group of initial variables for regression modeling. Three variable selection algorithms, including the forward selection algorithm with correlation analysis (CORR), recursive feature elimination algorithm (RFE), and sequential forward selection algorithm (SFS), were explored as candidate methods for screening combinations of input variables from the 32 spectral-derived initial variables. Partial least square regression (PLSR) and nonlinear support vector machine regression (SVR) were both applied to estimate total chlorophyll content (Chla+b) and carotenoid content (Car) at the leaf scale. The results show that the nonlinear SVR prediction model based on optimal variable combinations, selected by SFS using multiple scatter correction (MSC) preprocessing data, achieved the best estimation accuracy and stable prediction performance for the leaf pigment content. The Chla+b and Car models developed using the optimal model had R2 and RMSE predictive statistics of 0.849 and 0.825 and 5.116 and 0.869, respectively. This study demonstrates the advantages of using a nonlinear SVR model combined with SFS variable selection to obtain a more reliable estimation model for leaf biochemical pigment content.


Assuntos
Algoritmos , Populus , Carotenoides , Clorofila , Diagnóstico por Imagem , Folhas de Planta
10.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904931

RESUMO

In this study, the measurement characteristics of speckles based on the photoinduced electromotive force (photo-emf) effect for high-frequency, small-amplitude, and in-plane vibration were theoretically and experimentally studied. The relevant theoretical models were utilized. A GaAs crystal was used as the photo-emf detector for experimental research, as well as to study the influence of the amplitude and frequency of the vibration, the imaging magnification of the measuring system, and the average speckle size of the measuring light on the first harmonic of the induced photocurrent in the experiments. The correctness of the supplemented theoretical model was verified, and a theoretical and experimental basis was provided for the feasibility of using GaAs to measure in-plane vibrations with nanoscale amplitudes.

11.
Genes Dev ; 29(4): 350-5, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691465

RESUMO

Here we show that the Ino80 chromatin remodeling complex (Ino80C) directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II (Pol II) transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin.


Assuntos
Cromatina/genética , Eucromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Eucromatina/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo
12.
BMC Genomics ; 23(1): 90, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100986

RESUMO

BACKGROUND: Members of the genus Novius Mulsant, 1846 (= Rodolia Mulsant, 1850) (Coleoptera, Coccinellidae), play important roles in the biological control of cotton cushion scale pests, especially those belonging to Icerya. Since the best-known species, the vedalia beetle Novius cardinalis (Mulsant, 1850) was introduced into California from Australia, more than a century of successful use in classical biological control, some species of Novius have begun to exhibit some field adaptations to novel but related prey species. Despite their economic importance, relatively little is known about the underlying genetic adaptations associated with their feeding habits. Knowledge of the genome sequence of Novius is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the first high-quality genome sequence for Novius pumilus (Weise, 1892), a representative specialist of Novius. Computational Analysis of gene Family Evolution (CAFE) analysis showed that several orthogroups encoding chemosensors, digestive, and immunity-related enzymes were significantly expanded (P < 0.05) in N. pumilus compared to the published genomes of other four ladybirds. Furthermore, some of these orthogroups were under significant positive selection pressure (P < 0.05). Notably, transcriptome profiling demonstrated that many genes among the significantly expanded and positively selected orthogroups, as well as genes related to detoxification were differentially expressed, when N. pumilus feeding on the nature prey Icerya compared with the no feeding set. We speculate that these genes are vital in the Icerya adaptation of Novius species. CONCLUSIONS: We report the first Novius genome thus far. In addition, we provide comprehensive transcriptomic resources for N. pumilus. The results from this study may be helpful for understanding the association of the evolution of genes related to chemosensing, digestion, detoxification and immunity with the prey adaptation of insect predators. This will provide a reference for future research and utilization of Novius in biological control programs. Moreover, understanding the possible molecular mechanisms of prey adaptation also inform mass rearing of N. pumilus and other Novius, which may benefit pest control.


Assuntos
Besouros , Hemípteros , Animais , Agentes de Controle Biológico , Besouros/genética , Genômica , Insetos
13.
BMC Plant Biol ; 22(1): 514, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36329386

RESUMO

BACKGROUND: Grazing disturbance usually affects floral display and pollination efficiency in the desert steppe, which may cause pollen limitation in insect-pollinated plants. Effective pollination is essential for the reproductive success of insect-pollinated plants and insufficient pollen transfer may result in pollen limitation. Caragana microphylla Lam is an arid region shrub with ecological importance. Few studies have been conducted on how grazing disturbance influences pollen limitation and pollination efficiency of C. microphylla. Here, we quantify the effect of different grazing intensities on floral display, pollinator visitation frequency and seed production in the Urat desert steppe. RESULTS: In C. microphylla, supplemental hand pollination increased the seed set, and pollen limitation was the predominant limiting factor. As the heavy grazing significantly reduced the seed set in plants that underwent open-pollination, but there was no significant difference in the seed set between plants in the control plots and plants in the moderate grazing plots. Furthermore, there was a higher pollinator visitation frequency in plants in the control plots than in plants in the heavy grazing plots. CONCLUSIONS: We found that pollinator visitation frequency was significantly associated with the number of open flowers. Our findings also demonstrated that seed production is associated with pollinator visitation frequency, as indicated by increased seed production in flowers with higher pollinator visitation frequency. Therefore, this study provides insight into the effect of different grazing intensities on floral display that are important for influencing pollinator visitation frequency and pollination efficiency in desert steppes.


Assuntos
Flores , Herbivoria , Insetos , Pólen , Polinização , Animais , Flores/fisiologia , Insetos/fisiologia , Plantas/parasitologia , Polinização/fisiologia , Clima Desértico , Herbivoria/fisiologia
14.
Nutr Cancer ; 74(10): 3735-3746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35758096

RESUMO

This study aimed to formulate Kappaphycus alvarezii compound powder containing Kappaphycus alvarezii powder (KP), cooked sorghum powder (SP), and longan powder (LP); which was evaluated for its therapeutic effects against chemotherapy-induced intestinal mucosal injury (CIMI). Based on rheological properties, sensory evaluation, and antioxidant activity and using single factor and response surface methodology, the optimal formula to develop the compound powder was determined to be 35% KP, 30% SP, 5% LP, and 30% xylitol. Thereafter, the efficacy of the compound powder was tested by feeding BALB/c mice with diets supplemented with the Kappaphycus alvarezii compound powder (3% and 5%) for 14 consecutive days. The chemotherapeutic drug 5-fluorouracil was intraperitoneally injected (50 mg/kg) in the mice to induce CIMI for the last three consecutive days. Compared to the CIMI mice, those fed 5% Kappaphycus alvarezii compound powder (HC) showed significantly improved the intestinal injury, increased mucin-2 secretion, and reduced TNF-α, IL-1ß, IL-6, LT, and COX-2 levels. Furthermore, HC intake significantly reduced the Firmicutes-to-Bacteroidetes ratio, promoted the growth of beneficial bacteria, such as Alloprevotella, and inhibited the growth of harmful bacteria, such as Clostridium. In conclusion, HC has a protective effect against CIMI and provides a novel dietary strategy for patients undergoing chemotherapy.


Assuntos
Antineoplásicos , Mucosite , Rodófitas , Animais , Antineoplásicos/toxicidade , Fluoruracila/toxicidade , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos BALB C , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Pós/efeitos adversos
15.
Crit Rev Food Sci Nutr ; 62(19): 5322-5348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33591238

RESUMO

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.


Assuntos
Antineoplásicos , Neoplasias da Mama , Capsicum , Apoptose , Neoplasias da Mama/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Feminino , Humanos
16.
Nature ; 531(7593): 241-4, 2016 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-26863186

RESUMO

Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Capsella/genética , Capsella/metabolismo , Capsella/fisiologia , Membrana Celular/metabolismo , Mutação , Óvulo Vegetal/metabolismo , Fenótipo , Fosfotransferases/química , Fosfotransferases/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Reprodução
17.
BMC Biol ; 19(1): 7, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446206

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS: Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION: Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.


Assuntos
Antibiose/genética , Evolução Biológica , Besouros/genética , Transferência Genética Horizontal , Genes Bacterianos , Genes de Insetos , Adaptação Biológica , Animais , Parede Celular/química , Parede Celular/enzimologia , Besouros/enzimologia , Interações Hospedeiro-Patógeno , Hidrolases/genética
18.
Bioprocess Biosyst Eng ; 45(2): 353-364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797400

RESUMO

The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.


Assuntos
Enzimas Imobilizadas , Hexoses , Regeneração , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hexoses/biossíntese , Hexoses/química , Complexos Multienzimáticos , NADH NADPH Oxirredutases , Desidrogenase do Álcool de Açúcar
19.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613553

RESUMO

Lipids are the essential components of the cell intracellular and plasma membranes. Sulfoquinovosyldiacylglycerol (SQDG) is a glycolipid; glycolipids can replace phospholipids in maintaining phosphate (Pi) homeostasis in plants which are undergoing Pi starvation. Sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) is a critical enzyme in the first step of catalyzation in the formation of SQDG in rice. In this study, the expression pattern of different zones in roots of OsSQD1 in response to different Pi conditions is examined, and it is found that OsSQD1 is highly expressed in lateral roots under Pi-sufficient and -deficient conditions. The root phenotype observation of different OsSQD1 transgenic lines suggests that the knockout/down of OsSQD1 inhibits the formation and growth of lateral roots under different Pi conditions. Additionally, the lipid concentrations in OsSQD1 transgenic line roots indicate that OsSQD1 knockout/down decreases the concentration of phospholipids and glycolipids in Pi-starved roots. The OsSQD1 mutation also changes the composition of different lipid species with different acyl chain lengths, mainly under Pi-deprived conditions. The relative transcript expression of genes relating to glycolipid synthesis and phospholipid degradation is estimated to help study the mechanism by which OsSQD1 exerts an influence on the alteration of lipid composition and concentration in Pi-starved roots. Moreover, in Pi-starved roots, the knockout of OsSQD1 decreases the unsaturated fatty acid content of phospholipids and glycolipids. To summarize, the present study demonstrates that OsSQD1 plays a key role in the maintenance of phospholipid and glycolipid composition in Pi-deprived rice roots, which may influence root growth and development under Pi-deprived conditions.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Diglicerídeos/metabolismo , Glicolipídeos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
J Sci Food Agric ; 102(5): 2003-2011, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537961

RESUMO

BACKGROUND: Depuration is an important process performed to ensure the safety of oyster consumption, and the effect of salinity stress on physiological and ecological characteristics of oyster remains unknow. In this study, the simulated depuration of Crassostrea gigas was performed with the salinities varying from ±10% to ±20% away from that of production area (26, 28, 32, 35, and 38 g L-1 ), as well as respiratory metabolism, glycolysis, lipolysis, and apoptosis were analyzed. RESULTS: (i) The oxygen consumption rate, ammonia discharge rate and enzyme activities related to respiratory metabolism were decreased significantly at salinities of 38 g L-1 , indicating that salinity stress triggered the abnormal respiratory metabolism of C. gigas, further, glycolysis was enhanced. (ii) Glycogen decomposition, lactic acid increase, and fatty acid composition modifications were caused by adenosine monophosphate (AMP)-activated protein kinase (AMPK) -mediated during salinity stress. (iii) There was a clear decrease of the condition index and meat yield of C. gigas after 72 h of depuration, especially in salinity 38 g L-1 . (iv) Salinity stress would lead to the increase of cytochrome c levels, then cause apoptosis of C. gigas, while heat shock protein 70 (HSP70) would interfere with this process. CONCLUSION: Salinity stress had a significant effect on the physiological and ecological response of C. gigas during the depuration process, including respiratory metabolism, glycolysis, lipolysis, and apoptosis. In general, the low depuration salinity fluctuation (±10%) is helpful to maintain quality of C. gigas, as well as the optimal depuration time was 48 h. © 2021 Society of Chemical Industry.


Assuntos
Crassostrea , Animais , Apoptose , Glicólise , Lipólise , Salinidade , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA