RESUMO
BACKGROUND. The higher spatial resolution and image contrast for iodine-containing tissues of photon-counting detector (PCD) CT may address challenges in evaluating small calcified vessels when performing lower extremity CTA by energy-integrating detector (EID) CTA. OBJECTIVE. The purpose of the study was to compare the evaluation of infrapopliteal vasculature between lower extremity CTA performed using EID CT and PCD CT. METHODS. This prospective study included 32 patients (mean age, 69.7 ± 11.3 [SD] years; 27 men, five women) who underwent clinically indicated lower extremity EID CTA between April 2021 and March 2022; participants underwent investigational lower extremity PCD CTA later the same day as EID CTA using a reduced IV contrast media dose. Two radiologists independently reviewed examinations in two sessions, each containing a random combination of EID CTA and PCD CTA examinations; the readers assessed the number of visualized fibular perforators, characteristics of stenoses at 11 infrapopliteal segmental levels, and subjective arterial sharpness. RESULTS. Mean IV contrast media dose was 60.0 ± 11.0 (SD) mL for PCD CTA versus 139.6 ± 11.8 mL for EID CTA (p < .001). The number of identified fibular perforators per lower extremity was significantly higher for PCD CTA than for EID CTA for reader 1 (R1) (mean ± SD, 6.4 ± 3.2 vs 4.2 ± 2.4; p < .001) and reader 2 (R2) (8.8 ± 3.4 vs 7.6 ± 3.3; p = .04). Reader confidence for assessing stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 82.3 ± 20.3 vs 78.0 ± 20.2; p < .001) but not R2 (89.8 ± 16.7 vs 90.6 ± 7.1; p = .24). The number of segments per lower extremity with total occlusion was significantly lower for PCD CTA than for EID CTA for R2 (mean ± SD, 0.5 ± 1.3 vs 0.9 ± 1.7; p = .04) but not R1 (0.6 ± 1.3 vs 1.0 ± 1.5; p = .07). The number of segments per lower extremity with clinically significant nonocclusive stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 2.2 ± 2.2 vs 1.6 ± 1.7; p = .01) but not R2 (1.1 ± 2.0 vs 1.1 ± 1.4; p = .89). Arterial sharpness was significantly greater for PCD CTA than for EID CTA for R1 (mean ± SD, 3.2 ± 0.5 vs 1.8 ± 0.5; p < .001) and R2 (3.2 ± 0.4 vs 1.7 ± 0.8; p < .001). CONCLUSION. PCD CTA yielded multiple advantages relative to EID CTA for visualizing small infrapopliteal vessels and characterizing associated plaque. CLINICAL IMPACT. The use of PCD CTA may improve vascular evaluation in patients with peripheral arterial disease.
Assuntos
Meios de Contraste , Fótons , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Prospectivos , Constrição Patológica , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Extremidade Inferior/diagnóstico por imagemRESUMO
BACKGROUND. CT with adrenal-washout protocol (hereafter, adrenal-protocol CT) is commonly performed to distinguish adrenal adenomas from other adrenal tumors. However, the technique's utility among heterogeneous nodules is not well established, and the optimal method for placing ROIs in heterogeneous nodules is not clearly defined. OBJECTIVE. The purpose of our study was to determine the diagnostic performance of adrenal-protocol CT to distinguish adenomas from nonadenomas among heterogeneous adrenal nodules and to compare this performance among different methods for ROI placement. METHODS. This retrospective study included 164 patients (mean age, 59.1 years; 61 men, 103 women) with a total of 164 heterogeneous adrenal nodules evaluated using adrenal-protocol CT at seven institutions. All nodules had an available pathologic reference standard. A single investigator at each institution evaluated the CT images. ROIs were placed on portal venous phase images using four ROI methods: standard ROI, which refers to a single large ROI in the nodule's center; high ROI, a single ROI on the nodule's highest-attenuation area; low ROI, a single ROI the on nodule's lowest-attenuation area; and average ROI, the mean of the three ROIs on the nodule's superior, middle, and inferior thirds using the approach for the standard ROI. ROIs were then placed in identical locations on unenhanced and delayed phase images. Absolute washout was determined for all methods. RESULTS. The nodules comprised 82 adenomas and 82 nonadenomas (36 pheochromocytomas, 20 metastases, 12 adrenocortical carcinomas, and 14 nodules with other pathologies). The mean nodule size was 4.5 ± 2.8 (SD) cm (range, 1.6-23.0 cm). Unenhanced CT attenuation of 10 HU or less exhibited sensitivity and specificity for adenoma of 22.0% and 96.3% for standard-ROI, 11.0% and 98.8% for high-ROI, 58.5% and 84.1% for low-ROI, and 30.5% and 97.6% for average-ROI methods. Adrenal-protocol CT overall (unenhanced attenuation ≤ 10 HU or absolute washout of ≥ 60%) exhibited sensitivity and specificity for adenoma of 57.3% and 84.1% for the standard-ROI method, 63.4% and 51.2% for the high-ROI method, 68.3% and 62.2% for the low-ROI method, and 59.8% and 85.4% for the average-ROI method. CONCLUSION. Adrenal-protocol CT has poor diagnostic performance for distinguishing adenomas from nonadenomas among heterogeneous adrenal nodules regardless of the method used for ROI placement. CLINICAL IMPACT. Adrenal-protocol CT has limited utility in the evaluation of heterogeneous adrenal nodules.
Assuntos
Neoplasias das Glândulas Suprarrenais , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Diagnóstico Diferencial , Sensibilidade e Especificidade , Idoso , Adulto , Meios de Contraste , Adenoma/diagnóstico por imagem , Idoso de 80 Anos ou maisRESUMO
ABSTRACT: The Fontan procedure is the definitive treatment for patients with single-ventricle physiology. Surgical advances have led to a growing number of patients surviving into adulthood. Fontan-associated liver disease (FALD) encompasses a spectrum of pathologic liver changes that occur secondary to altered physiology including congestion, fibrosis, and the development of liver masses. Assessment of FALD is difficult and relies on using imaging alongside of clinical, laboratory, and pathology information. Ultrasound, computed tomography, and magnetic resonance imaging are capable of demonstrating physiologic and hepatic parenchymal abnormalities commonly seen in FALD. Several novel imaging techniques including magnetic resonance elastography are under study for use as biomarkers for FALD progression. Imaging has a central role in detection and characterization of liver masses as benign or malignant. Benign FNH-like masses are commonly encountered; however, these can display atypical features and be mistaken for hepatocellular carcinoma (HCC). Fontan patients are at elevated risk for HCC, which is a feared complication and has a poor prognosis in this population. While imaging screening for HCC is widely advocated, no consensus has been reached regarding an optimal surveillance regimen.
Assuntos
Carcinoma Hepatocelular , Hepatopatias , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Hepatopatias/diagnóstico por imagem , Fígado/diagnóstico por imagem , Ultrassonografia , Fibrose , Cirrose HepáticaRESUMO
OBJECTIVE: Pulmonary CT angiography (CTA) to detect pulmonary emboli can be performed using conventional dual-source CT with single-energy acquisition at high-pitch (high-pitch conventional CT), which minimizes motion artifacts, or routine-pitch, dual-energy acquisitions (routine-pitch conventional DECT), which maximize iodine signal. We compared iodine signal, radiation dose, and motion artifacts of pulmonary CTA between these conventional CT modalities and dual-source photon-counting detector CT with high-pitch, multienergy acquisitions (high-pitch photon-counting CT). METHODS: Consecutive clinically indicated pulmonary CTA exams were collected. CT number/noise was measured from the main to right lower lobe segmental pulmonary arteries using 120 kV threshold low, 120 kV, and mixed kV (0.6 linear blend) images. Three radiologists reviewed anonymized, randomized exams, rating them using a 4- or 5-point Likert scale (1 = worst, and 4/5 = best) for contrast enhancement in pulmonary arteries, motion artifacts in aortic root to subsegmental pulmonary arteries, lung image quality; pulmonary blood volume (PBV) map image quality (for multienergy or dual-energy exams), and contribution to reader confidence. RESULTS: One hundred fifty patients underwent high-pitch photon-counting CT (n = 50), high-pitch conventional CT (n = 50), and routine-pitch conventional DECT (n = 50). High-pitch photon-counting CT had lower radiation dose (CTDIvol: 8.1 ± 2.5 vs 9.6 ± 6.8 and 16.2 ± 8.5 mGy, respectively; P < 0.001), and routine-pitch conventional DECT had significantly less contrast (P < 0.009). CT number and CNR measurements were significantly greater at high-pitch photon-counting CT (P < 0.001). Across readers, high-pitch photon-counting CT demonstrated significantly higher subjective contrast enhancement in the pulmonary arteries compared to the other modalities (4.7 ± 0.6 vs 4.4 ± 0.7 vs 4.3 ± 0.7; P = 0.011) and lung image quality (3.4 ± 0.5 vs 3.1 ± 0.5 vs 3.1 ± 0.5; P = 0.013). High-pitch photon-counting CT and high-pitch conventional CT had fewer motion artifacts at all levels compared to DECT (P < 0.001). High-pitch photon-counting CT PBV maps had superior image quality (P < 0.001) and contribution to reader confidence (P < 0.001) compared to routine-pitch conventional DECT. CONCLUSION: High-pitch photon-counting pulmonary CTA demonstrated higher contrast in pulmonary arteries at lower radiation doses with improved lung image quality and fewer motion artifacts compared to high-pitch conventional CT and routine-pitch conventional dual-energy CT.
RESUMO
PURPOSE: A dual-source CT system can be operated in a high-pitch helical mode to provide a temporal resolution of 66 ms, which reduces motion artifacts in CT pulmonary angiography (CTPA). It can also be operated in a multi-energy (ME) mode to provide iodine maps, beneficial in the evaluation of pulmonary embolism (PE). No energy-integrating detector (EID) CT can perform simultaneous ME and high-pitch acquisition. This phantom study aimed to evaluate the ability of a photon-counting-detector (PCD) CT to perform simultaneous high-pitch and ME imaging for CTPA. METHODS: A motion phantom was used to mimic the respiratory motion. Two tubes filled with iodine with intravascular thrombus mimicked by injecting glue within the tubes were placed along with 5, 10, and 15 mg/mL iodine samples, on a motion phantom at 20 and 30 revolutions per minute. Separate high-pitch and ME EID-CT scans and a single high-pitch ME PCD scan were acquired and virtual monoenergetic images and iodine maps reconstructed. Percent thrombus occlusion was measured and compared between static and moving images. RESULTS: When there was motion, EID-CT ME suffered from significant motion artifacts. The measured iodine concentrations with PCD-CT in high-pitch ME were more stable when there was a motion, with a lower standard deviation than EID-CT in ME mode. The estimated percent thrombus occlusion dropped significantly with applied motion on EID-CT, while PCD-CT high-pitch ME mode showed good agreement between measurements on static or moving images. CONCLUSION: PCD-CT with combined ME and high-pitch mode facilitates simultaneous accurate iodine quantification and assessment of intravascular occlusion.
RESUMO
Eosinophilic gastrointestinal disorders (EGIDs) are inflammatory conditions of the gastrointestinal tract that are characterized by tissue eosinophilia and end-organ dysfunction or damage. Primary EGIDs are associated with atopy and other allergic conditions, whereas secondary EGIDs are associated with underlying systemic diseases or hypereosinophilic syndrome. Within the spectrum of EGIDs, eosinophilic esophagitis is the most prevalent. Eosinophilic gastroenteritis and eosinophilic colitis are relatively uncommon. Eosinophilic infiltration of the liver, biliary tree, and/or pancreas also can occur and mimic other inflammatory and malignant conditions. Although endoscopic evaluation is the method of choice for eosinophilic esophagitis, radiologic evaluation of the esophagus plays an important role in the assessment of disease severity. CT and MR enterography are the modalities of choice for demonstrating specific forms of eosinophilic gastroenteritis. CT and MRI are important in the detection of abdominal visceral involvement in EGIDs. Diagnosis is often challenging and relies on symptoms, imaging findings, histologic confirmation of tissue eosinophilia, and correlation with peripheral eosinophilia. Imaging is crucial for identifying characteristic organ-specific findings, although imaging findings are not specific. When promptly treated, EGIDs usually have a benign clinical course. However, a delayed diagnosis and associated surgical interventions have been associated with morbidity. Therefore, a radiologist's knowledge of the imaging findings of EGIDs in the appropriate clinical settings may aid in early diagnosis and thereby improve patient care. An overview of the clinical features and imaging findings of EGIDs and the eosinophilic disorders of associated abdominal viscera is provided. Online supplemental material is available for this article. ©RSNA, 2022.
Assuntos
Enterite , Esofagite Eosinofílica , Enterite/complicações , Enterite/diagnóstico por imagem , Eosinofilia , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/terapia , Gastrite , Humanos , VíscerasAssuntos
Abdome , Fígado , Humanos , Diagnóstico Diferencial , Imageamento por Ressonância MagnéticaRESUMO
RATIONALE AND OBJECTIVES: Methods are needed to improve the detection of hepatic metastases. Errors occur in both lesion detection (search) and decisions of benign versus malignant (classification). Our purpose was to evaluate a training program to reduce search errors and classification errors in the detection of hepatic metastases in contrast-enhanced abdominal computed tomography (CT). MATERIALS AND METHODS: After Institutional Review Board approval, we conducted a single-group prospective pretest-posttest study. Pretest and posttest were identical and consisted of interpreting 40 contrast-enhanced abdominal CT exams containing 91 liver metastases under eye tracking. Between pretest and posttest, readers completed search training with eye-tracker feedback and coaching to increase interpretation time, use liver windows, and use coronal reformations. They also completed classification training with part-task practice, rating lesions as benign or malignant. The primary outcome was metastases missed due to search errors (<2 seconds gaze under eye tracker) and classification errors (>2 seconds). Jackknife free-response receiver operator characteristic (JAFROC) analysis was also conducted. RESULTS: A total of 31 radiologist readers (8 abdominal subspecialists, 8 nonabdominal subspecialists, 15 senior residents/fellows) participated. Search errors were reduced (pretest 11%, posttest 8%, difference 3% [95% confidence interval, 0.3%-5.1%], P = .01), but there was no difference in classification errors (difference 0%, P = .97) or in JAFROC figure of merit (difference -0.01, P = .36). In subgroup analysis, abdominal subspecialists demonstrated no evidence of change. CONCLUSION: Targeted training reduced search errors but not classification errors for the detection of hepatic metastases at contrast-enhanced abdominal CT. Improvements were not seen in all subgroups.
Assuntos
Neoplasias Hepáticas , Tomografia Computadorizada por Raios X , Humanos , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas/patologia , Meios de ContrasteRESUMO
OBJECTIVES: To describe the feasibility and evaluate the performance of multiphasic photon-counting detector (PCD) CT for detecting breast cancer and nodal metastases with correlative dynamic breast MRI and digital mammography as the reference standard. METHODS: Adult females with biopsy-proven breast cancer undergoing staging breast MRI were prospectively recruited to undergo a multiphasic PCD-CT using a 3-phase protocol: a non-contrast ultra-high-resolution (UHR) scan and 2 intravenous contrast-enhanced scans with 50 and 180 s delay. Three breast radiologists compared CT characteristics of the index malignancy, regional lymphadenopathy, and extramammary findings to MRI. RESULTS: Thirteen patients underwent both an MRI and PCD-CT (mean age: 53 years, range: 36-75 years). Eleven of thirteen cases demonstrated suspicious mass or non-mass enhancement on PCD-CT when compared to MRI. All cases with metastatic lymphadenopathy (3/3 cases) demonstrated early avid enhancement similar to the index malignancy. All cases with multifocal or multicentric disease on MRI were also identified on PCD-CT (3/3 cases), including a 4 mm suspicious satellite lesion. Four of five patients with residual suspicious post-biopsy calcifications on mammograms were detected on the UHR PCD-CT scan. Owing to increased field-of-view at PCD-CT, a 5 mm thoracic vertebral metastasis was identified at PCD-CT and not with the breast MRI. CONCLUSIONS: A 3-phase PCD-CT scan protocol shows initial promising results in characterizing breast cancer and regional lymphadenopathy similar to MRI and detects microcalcifications in 80% of cases. ADVANCES IN KNOWLEDGE: UHR and spectral capabilities of PCD-CT may allow for comprehensive characterization of breast cancer and may represent an alternative to breast MRI in select cases.
Assuntos
Neoplasias da Mama , Calcinose , Linfadenopatia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Mama , Linfonodos , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: Subtle liver metastases may be missed in contrast enhanced CT imaging. We determined the impact of lesion location and conspicuity on metastasis detection using data from a prior reader study. METHODS: In the prior reader study, 25 radiologists examined 40 CT exams each and circumscribed all suspected hepatic metastases. CT exams were chosen to include a total of 91 visually challenging metastases. The detectability of a metastasis was defined as the fraction of radiologists that circumscribed it. A conspicuity index was calculated for each metastasis by multiplying metastasis diameter with its contrast, defined as the difference between the average of a circular region within the metastasis and the average of the surrounding circular region of liver parenchyma. The effects of distance from liver edge and of conspicuity index on metastasis detectability were measured using multivariable linear regression. RESULTS: The median metastasis was 1.4 cm from the edge (interquartile range [IQR], 0.9-2.1 cm). Its diameter was 1.2 cm (IQR, 0.9-1.8 cm), and its contrast was 38 HU (IQR, 23-68 HU). An increase of one standard deviation in conspicuity index was associated with a 6.9% increase in detectability (p = 0.008), whereas an increase of one standard deviation in distance from the liver edge was associated with a 5.5% increase in detectability (p = 0.03). CONCLUSION: Peripheral liver metastases were missed more frequently than central liver metastases, with this effect depending on metastasis size and contrast.
RESUMO
BACKGROUND: Perianal draining tunnels in hidradenitis suppurativa (HS) and perianal fistulizing inflammatory bowel disease (IBD) present diagnostic and management dilemmas. METHODS: We conducted a retrospective chart review of patients with perianal disease evaluated at Mayo Clinic from January 1, 1998, through July 31, 2021. Patients' demographic and clinical data were extracted, and 28 clinical features were collected. After experimenting with several machine learning techniques, random forests were used to select the 15 most important clinical features to construct the diagnostic prediction model to distinguish perianal HS from fistulizing perianal IBD. RESULTS: A total of 263 patients were included (98 with HS, 100 with IBD, and 65 with both IBD and HS). Patients with HS had a higher mean body mass index, a higher smoking rate, and more commonly showed cutaneous manifestations of tunnels and comedones, while fistulas, abscesses, induration, anal tags, ulcers, and anal fissures were more common in patients with IBD. In addition to having lesions in the perianal area, patients with IBD often had lesions in the buttocks and perineum, while those with HS had additional lesions in the axillae and groin. Among the statistically significant features, the 15 most important were identified by random forest: fistula, tunnel, digestive symptom, knife-cut ulcer, perineum, body mass index, age, axilla, abscess, tags, smoking, groin, genital cutaneous edema, erythema, and bilateral/unilateral. CONCLUSIONS: The results of this study may help differentiate perianal lesions, especially perineal HS and fistulizing perineal IBD, and provide promise for a better therapeutic outcome.
RESUMO
BACKGROUND: Discrimination between adrenocortical carcinoma and lipid-poor cortical adenoma preoperatively is frequently difficult as these two entities have overlapping imaging characteristics. Differentiation will allow for the selection of the most appropriate operative approach and may help prevent over-treatment. We aimed to identify imaging features that could preoperatively differentiate adrenocortical carcinoma from lipid-poor cortical adenoma and use them in a novel imaging-based score. METHODS: We conducted a retrospective analysis of patients with pathologically proven adrenocortical carcinoma and lipid-poor cortical adenoma who underwent resection in a single tertiary referral center between March 1998 and August 2020. The inclusion criteria were diameter >1 cm, attenuation >10 Hounsfield units on nonenhanced computed tomography, and histopathologic diagnosis. Patients with metastatic or locally advanced adrenocortical carcinoma adenoma (stages 3-4) were excluded. We developed a score using binary logistic multivariate regression model in 5-fold derivation (â¼70%) cohorts with stepwise backward conditional regression as feature selection. Standardized mean regression weight was used as variable score points. RESULTS: We identified 232 adrenals resected across 211 patients. By comparing the imaging characteristics of adrenocortical carcinoma (n = 56) and lipid-poor cortical adenoma (n = 156), we revealed statistically significant differences between the groups in 9 parameters: size, attenuation, thin and thick rim enhancement patterns, heterogeneity, calcification, necrosis, fat infiltration, and lymph node prominence. The score mean performance was 100% sensitivity for the exclusion of adrenocortical carcinoma, 80% specificity (95% confidence interval, 68.3-91.5), 66% positive predictive value (95% confidence interval, 52.3-78.7), and 100% negative predictive value with area under the curve of 0.974. CONCLUSION: We defined and evaluated a novel 9-variable, imaging-based score. This score outperformed any single variable and could facilitate safe preoperative discrimination of adrenocortical carcinoma and lipid-poor cortical adenoma.
Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/diagnóstico por imagem , Carcinoma Adrenocortical/cirurgia , Estudos Retrospectivos , Adenoma Adrenocortical/diagnóstico por imagem , Adenoma Adrenocortical/cirurgia , Adenoma/patologia , Neoplasias do Córtex Suprarrenal/diagnóstico por imagem , Neoplasias do Córtex Suprarrenal/cirurgia , Lipídeos , Diagnóstico DiferencialRESUMO
Coronary plaque risk classification in images acquired with photon-counting-detector (PCD) CT was performed using a radiomics-based machine learning (ML) model. With IRB approval, 19 coronary CTA patients were scanned on a PCD-CT (NAEOTOM Alpha, Siemens Healthineers) with median CTDIvol of 8.02 mGy. Five types of images: virtual monoenergetic images (VMIs) at 50-keV, 70-keV, and 100-keV, iodine maps, and virtual non-contrast (VNC) images were reconstructed using an iterative reconstruction algorithm (QIR), a quantitative kernel (Qr40) and 0.6-mm/0.3-mm slice thickness/increment. Atherosclerotic plaques were segmented using semi-automatic software (Research Frontier, Siemens). Segmentation confirmation and risk stratification (low- vs high-risk) were performed by a board-certified cardiac radiologist. A total of 93 radiomic features were extracted from each image using PyRadiomics (v2.2.0b1). For each feature, a t-test was performed between low- and high-risk plaques (p<0.05 considered significant). Two significant and non-redundant features were input into a support vector machine (SVM). A leave-one-out cross-validation strategy was adopted and the classification accuracy was computed. Fifteen low-risk and ten high-risk plaques were identified by the radiologist. A total of 18, 32, 43, 16, and 55 out of 93 features in 50-keV, 70-keV, 100-keV, iodine map, and VNC images were statistically significant. A total of 17, 19, 22, 20, and 22 out of 25 plaques were classified correctly in 50-keV, 70-keV, 100-keV, iodine map, and VNC images, respectively. A ML model using 100-keV VMIs and VNC images derived from coronary PCD-CTA best automatically differentiated low- and high-risk coronary plaques.
RESUMO
For rectal cancer, MRI plays an important role in assessing extramural tumor spread and informs surgical planning. The contemporary standardized management of rectal cancer with total mesorectal excision guided by imaging-based risk stratification has dramatically improved patient outcomes. Colonoscopy and CT are utilized in surveillance after surgery to detect intraluminal and extramural recurrence, respectively; however, local recurrence of rectal cancer remains a challenge because postoperative changes such as fat necrosis and fibrosis can resemble tumor recurrence; additionally, mucinous adenocarcinoma recurrence may mimic fluid collection or abscess on CT. MRI and 18F-FDG PET are problem-resolving modalities for equivocal imaging findings on CT. Treatment options for recurrent rectal cancer include pelvic exenteration to achieve radical (R0 resection) resection and intraoperative radiation therapy. After pathologic diagnosis of recurrence, imaging plays an essential role for evaluating the feasibility and approach of salvage surgery. Patterns of recurrence can be divided into axial/central, anterior, lateral, and posterior. Some lateral and posterior recurrence patterns especially in patients with neurogenic pain are associated with perineural invasion. Cross-sectional imaging, especially MRI and 18F-FDG PET, permit direct visualization of perineural spread, and contribute to determining the extent of resection. Multidisciplinary discussion is essential for treatment planning of locally recurrent rectal cancer. This review article illustrates surveillance strategy after initial surgery, imaging patterns of rectal cancer recurrence based on anatomic classification, highlights imaging findings of perineural spread on each modality, and discusses how resectability and contemporary surgical approaches are determined based on imaging findings.
Assuntos
Fluordesoxiglucose F18 , Neoplasias Retais , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Reto/patologia , Pelve/patologia , Estudos Retrospectivos , Estadiamento de NeoplasiasRESUMO
Detection of low contrast liver metastases varies between radiologists. Training may improve performance for lower-performing readers and reduce inter-radiologist variability. We recruited 31 radiologists (15 trainees, 8 non-abdominal staff, and 8 abdominal staff) to participate in four separate reading sessions: pre-test, search training, classification training, and post-test. In the pre-test, each radiologist interpreted 40 liver CT exams containing 91 metastases, circumscribed suspected hepatic metastases while under eye tracker observation, and rated confidence. In search training, radiologists interpreted a separate set of 30 liver CT exams while receiving eye tracker feedback and after coaching to increase use of coronal reformations, interpretation time, and use of liver windows. In classification training, radiologists interpreted up to 100 liver CT image patches, most with benign or malignant lesions, and compared their annotations to ground truth. Post-test was identical to pre-test. Between pre- and post-test, sensitivity increased by 2.8% (p = 0.01) but AUC did not change significantly. Missed metastases were classified as search errors (<2 seconds gaze time) or classification errors (>2 seconds gaze time) using the eye tracker. Out of 2775 possible detections, search errors decreased (10.8% to 8.1%; p < 0.01) but classification errors were unchanged (5.7% vs 5.7%). When stratified by difficulty, easier metastases showed larger reductions in search errors: for metastases with average sensitivity of 0-50%, 50-90%, and 90-100%, reductions in search errors were 16%, 35%, and 58%, respectively. The training program studied here may be able to improve radiologist performance by reducing errors but not classification errors.
RESUMO
PURPOSE: To compare the utility of a novel metal artifact reduction algorithm to standard imaging in improving visualization of key structures, diagnostic confidence, and patient-level confidence in malignancy in patients with suspected bladder cancer. METHODS: Patients with hip implants undergoing CT urography for suspected bladder malignancy were enrolled. Images were reconstructed using 3 methods: (1) Filtered Back Projection (FBP), (2) Iterative Metal Artifact Reduction (iMAR), and (3) Adaptive Iterative Metal Artifact Reduction (AiMAR) strength 4. In multiple reading sessions, three radiologists graded visualization of critical anatomic structures and artifact severity (6-point scales, lower scores desirable), and diagnostic confidence in blinded fashion. They also graded patient-level confidence in malignancy based on imaging findings in each patient. RESULTS: Thirty-two patients (8 females) with a mean age of 74.5 ± 8.5 years were included. The median (range) visualization scores for FBP, iMAR, and AiMAR were 3.6 (1.1-4.9), 1.6 (0.3-2.8), and 1.6 (0.3-2.6), respectively. Both iMAR and AiMAR had anatomic visualization and artifact scores better than FBP (P < 0.001 for both) and similar to each other (P > 0.05). Structures with the most improvement in visualization score with the use of metal artifact reduction algorithms included the obturator internus muscle, internal and external iliac nodal chains, and vagina. iMAR and AiMAR improved diagnostic confidence (P < 0.001) and patient-level confidence in malignancy (P ≤ 0.24). CONCLUSION: For patients with hip prostheses and suspected bladder malignancy, the use of iMAR or AiMAR was shown to significantly reduce metal artifacts, thus improving diagnostic confidence and patient-level confidence in malignancy.