Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 165(6): 1440-1453, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259151

RESUMO

Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Biocatálise , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Ubiquitinação
2.
Mol Cell ; 63(4): 593-607, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27522463

RESUMO

The mitotic checkpoint complex (MCC) coordinates proper chromosome biorientation on the spindle with ubiquitination activities of CDC20-activated anaphase-promoting complex/cyclosome (APC/C(CDC20)). APC/C(CDC20) and two E2s, UBE2C and UBE2S, catalyze ubiquitination through distinct architectures for linking ubiquitin (UB) to substrates and elongating polyUB chains, respectively. MCC, which contains a second molecule of CDC20, blocks APC/C(CDC20)-UBE2C-dependent ubiquitination of Securin and Cyclins, while differentially determining or inhibiting CDC20 ubiquitination to regulate spindle surveillance, checkpoint activation, and checkpoint termination. Here electron microscopy reveals conformational variation of APC/C(CDC20)-MCC underlying this multifaceted regulation. MCC binds APC/C-bound CDC20 to inhibit substrate access. However, rotation about the CDC20-MCC assembly and conformational variability of APC/C modulate UBE2C-catalyzed ubiquitination of MCC's CDC20 molecule. Access of UBE2C is limiting for subsequent polyubiquitination by UBE2S. We propose that conformational dynamics of APC/C(CDC20)-MCC modulate E2 activation and determine distinctive ubiquitination activities as part of a response mechanism ensuring accurate sister chromatid segregation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Segregação de Cromossomos , Microscopia Crioeletrônica , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Ubiquitina/metabolismo , Sítios de Ligação , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/ultraestrutura , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação
3.
Arch Microbiol ; 206(1): 4, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994962

RESUMO

Streptococcus pyogenes harboring an FCT type 3 genomic region display pili composed of three types of pilins. In this study, the structure of the base pilin FctB from a serotype M3 strain (FctB3) was determined at 2.8 Å resolution. In accordance with the previously reported structure of FctB from a serotype T9 strain (FctB9), FctB3 was found to consist of an immunoglobulin-like domain and proline-rich tail region. Data obtained from structure comparison revealed main differences in the omega (Ω) loop structure and the proline-rich tail direction. In the Ω loop structure, a differential hydrogen bond network was observed, while the lysine residue responsible for linkage to growing pili was located at the same position in both structures, which indicated that switching of the hydrogen bond network in the Ω loop without changing the lysine position is advantageous for linkage to the backbone pilin FctA. The difference in direction of the proline-rich tail is potentially caused by a single residue located at the root of the proline-rich tail. Also, the FctB3 structure was found to be stabilized by intramolecular large hydrophobic interactions instead of an isopeptide bond. Comparisons of the FctB3 and FctA structures indicated that the FctA structure is more favorable for linkage to FctA. In addition, the heterodimer formation of FctB with Cpa or FctA was shown to be mediated by the putative chaperone SipA. Together, these findings provide an alternative FctB structure as well as insight into the interactions between pilin proteins.


Assuntos
Proteínas de Fímbrias , Lisina , Proteínas de Fímbrias/genética , Fímbrias Bacterianas , Genômica , Prolina
4.
Microbiol Immunol ; 67(7): 319-333, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37138376

RESUMO

Streptococcus pyogenes displays a wide variety of pili, which is largely dependent on serotype. A distinct subset of S. pyogenes strains that possess the Nra transcriptional regulator demonstrates thermoregulated pilus production. Findings obtained in the present study of an Nra-positive serotype M49 strain revealed involvement of conserved virulence factor A (CvfA), also referred to as ribonuclease Y (RNase Y), in virulence factor expression and pilus production, while a cvfA deletion strain showed reduced pilus production and adherence to human keratinocytes as compared with wild-type and revertant strains. Furthermore, transcript levels of pilus subunits and srtC2 genes were decreased by cvfA deletion, which was remarkable at 25°C. Likewise, both messenger RNA (mRNA) and protein levels of Nra were remarkably decreased by cvfA deletion. Whether the expression of other pilus-related regulators, including fasX and CovR, was subject to thermoregulation was also examined. While the mRNA level of fasX, which inhibits cpa and fctA translation, was decreased by cvfA deletion at both 37°C and 25°C, CovR mRNA and protein levels, as well as its phosphorylation level were not significantly changed, suggesting that neither fasX nor CovR is necessarily involved in thermosensitive pilus production. Phenotypic analysis of the mutant strains revealed that culture temperature and cvfA deletion had varied effects on streptolysin S and SpeB activities. Furthermore, bactericidal assay data showed that cvfA deletion decreased the rate of survival in human blood. Together, the present findings indicate that CvfA is involved in regulation of pilus production and virulence-related phenotypes of the serotype M49 strain of S. pyogenes.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
Nat Chem Biol ; 16(5): 546-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152539

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a ubiquitin ligase that initiates anaphase and mitotic exit. APC/C is activated by Cdc20 and inhibited by the mitotic checkpoint complex (MCC), which delays mitotic exit when the spindle assembly checkpoint (SAC) is activated. We previously identified apcin as a small molecule ligand of Cdc20 that inhibits APC/CCdc20 and prolongs mitosis. Here we find that apcin paradoxically shortens mitosis when SAC activity is high. These opposing effects of apcin arise from targeting of a common binding site in Cdc20 required for both substrate ubiquitination and MCC-dependent APC/C inhibition. Furthermore, we found that apcin cooperates with p31comet to relieve MCC-dependent inhibition of APC/C. Apcin therefore causes either net APC/C inhibition, prolonging mitosis when SAC activity is low, or net APC/C activation, shortening mitosis when SAC activity is high, demonstrating that a small molecule can produce opposing biological effects depending on regulatory context.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Carbamatos/farmacologia , Proteínas Cdc20/antagonistas & inibidores , Diaminas/farmacologia , Mitose/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Células HCT116 , Células HeLa , Humanos , Nocodazol/farmacologia , Proteínas Nucleares/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Telomerase/genética , Telomerase/metabolismo , Imagem com Lapso de Tempo , Ubiquitinação
6.
Genes Dev ; 26(10): 1041-54, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22588718

RESUMO

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²âº mediated by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP3R-dependent manner. By reducing steady-state levels of ER Ca²âº via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1's ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²âº signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/imunologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus/imunologia , Estresse Fisiológico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471300

RESUMO

Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection. At the host infection site, the local environment and interactions between the host and bacteria have effects on bacterial gene expression profiles, while the gene expression pattern of S. pyogenes related to this disease remains unknown. In this study, we used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq) analysis of S. pyogenes M1T1 strain 5448 by isolating total RNA from infected hind limbs obtained at 24, 48, and 96 h postinfection. RNA-seq analysis results identified 483 bacterial genes whose expression was consistently altered in the infected hindlimbs compared to their expression under in vitro conditions. Genes showing consistent enrichment during infection included 306 encoding molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal transport, and the vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes, encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd), was noted in the present mouse model (log2 fold change, >6.0, >9.4, and >7.1, respectively). Conversely, the number of consistently downregulated genes was 177, including those associated with the oxidative stress response and cell division. These results suggest that in necrotizing fasciitis, S. pyogenes shows an altered metabolism, decreased cell proliferation, and upregulation of expression of major toxins. Our findings are considered to provide critical information for developing novel treatment strategies and vaccines for necrotizing fasciitis.IMPORTANCE Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies.


Assuntos
Fasciite Necrosante/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transcriptoma , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Proliferação de Células , Modelos Animais de Doenças , Fasciite Necrosante/metabolismo , Fasciite Necrosante/patologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno , Hidrolases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano/análise , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Estreptolisinas , Virulência/genética
8.
Microbiol Immunol ; 63(11): 469-473, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31444810

RESUMO

Leptospira was isolated from environmental water in central Japan using selective medium comprising five antibiotics, namely sulfamethoxazole, trimethoprim, amphotericin B, fosfomycin, and 5-fluorouracil. Of 100 water samples 57 (57%) were culture-positive and 50 pure cultures were isolated. Of the 50 cultures isolated from water 48 were classified into a saprophytic clade on the basis of 16S ribosomal RNA gene sequences. However, it was previously reported that isolates from soil in Japan belonged to pathogenic, intermediate, and saprophytic clades, the current findings suggest less diversity of Leptospira species in environmental water than that in soil in Japan.


Assuntos
Leptospira/classificação , RNA Ribossômico 16S/genética , Microbiologia do Solo , Microbiologia da Água , Antibacterianos/farmacologia , Japão , Leptospira/efeitos dos fármacos , Leptospira/genética , Leptospira/isolamento & purificação , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Análise de Sequência de RNA
9.
Microbiol Immunol ; 63(3-4): 89-99, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30817029

RESUMO

In a previous study, 50 of 132 soil samples collected throughout Japan were found to be Leptospira-positive. In the present study, three strains identified in the collected specimens, three, E8, E18 and YH101, were found to be divergent from previously described Leptospira species according to 16S ribosomal RNA gene sequence analysis. These three strains have a helical shape similar to that of typical Leptospira and were not re-isolated from experimental mice inoculated with the cultured strains. Upon 16S ribosomal RNA gene sequence analysis, E8 was found to belong to the intermediate Leptospira species clade and E18 and YH101 to belong to the saprophytic Leptospira species clade. Based on analyses of genome-to-genome distances and average nucleotide identity in silico using whole genome sequences and DNA-DNA hybridization in vitro, these isolates were found to be distinct from previously described Leptospira species. Therefore, these three isolates represent novel species of the genus Leptospira for which the names Leptospira johnsonii sp. nov., (type strain E8 T , = JCM 32515 T = CIP111620 T ), Leptospira ellinghausenii sp. nov., (type strain E18 T , = JCM 32516 T = CIP111618 T ) and Leptospira ryugenii sp. nov., (type strain YH101 T , = JCM 32518 T = CIP111617 T ) are proposed.


Assuntos
Leptospira/classificação , Leptospira/isolamento & purificação , Microbiologia do Solo , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genoma Bacteriano/genética , Japão , Leptospira/genética , Masculino , Camundongos , Camundongos Transgênicos , Filogenia , RNA Ribossômico 16S/genética , Microbiologia da Água , Sequenciamento Completo do Genoma
10.
Proc Natl Acad Sci U S A ; 113(19): E2570-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114510

RESUMO

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Mitose/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/química , Sítios de Ligação , Proteínas Cdc20/química , Ativação Enzimática , Células HeLa , Humanos , Mutagênese Sítio-Dirigida/métodos , Fosforilação , Ligação Proteica , Transfecção/métodos
11.
J Biol Chem ; 292(10): 4244-4254, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28154192

RESUMO

Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise/imunologia , Complemento C1q/metabolismo , Endopeptidases/metabolismo , Infecções Pneumocócicas/imunologia , Dermatopatias/imunologia , Streptococcus pyogenes/metabolismo , Animais , Proteínas de Bactérias/imunologia , Adesão Celular , Células Cultivadas , Complemento C1q/imunologia , Endopeptidases/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/metabolismo , Dermatopatias/metabolismo , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
12.
Cell Immunol ; 325: 14-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29366563

RESUMO

Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases.


Assuntos
Autólise/metabolismo , Proteínas de Ligação a DNA/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias , Cromatografia Líquida/métodos , Citocinas/metabolismo , Proteínas de Ligação a DNA/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Chaperonas Moleculares/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Células THP-1 , Espectrometria de Massas em Tandem/métodos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
13.
Microbiol Immunol ; 62(10): 617-623, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30211957

RESUMO

Streptococcus pyogenes is a bacterium that causes systemic diseases such as pharyngitis and toxic shock syndrome. S. pyogenes produces molecules that inhibit the function of the human immune system, thus allowing growth and spread of the pathogen in tissues. It is known that S. pyogenes CAMP factor induces vacuolation in macrophages; however, the mechanism remains unclear. In the current study, the mechanism by which CAMP factor induces vacuolation in macrophages was investigated. CAMP factor was found to induce calcium ion uptake in murine macrophage RAW264.7 cells. In addition, EDTA inhibited calcium ion uptake and vacuolation in the cells. The L-type voltage-dependent calcium ion channel blockers nifedipine and verapamil reduced vacuolation. Furthermore, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin also inhibited the vacuolation induced by CAMP factor. Fluorescent microscopy revealed that clathrin localized to the vacuoles. These results suggest that the vacuolation is related to calcium ion uptake by RAW264.7 cells via L-type voltage-dependent calcium ion channels. Therefore, it was concluded that the vacuoles induced by S. pyogenes CAMP factor in macrophages are clathrin-dependent endosomes induced by activation of the phosphoinositide 3-kinase signaling pathway through calcium ion uptake.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cálcio/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Streptococcus pyogenes/metabolismo , Animais , Cromonas/antagonistas & inibidores , Ácido Edético/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Morfolinas/antagonistas & inibidores , Nifedipino/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Células RAW 264.7/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Streptococcus pyogenes/imunologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Verapamil/farmacologia
14.
Proc Natl Acad Sci U S A ; 112(17): 5272-9, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25825779

RESUMO

For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING-E2∼Ub catalytic modules such as APC11-UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APC(CDH1) and substrate ubiquitination. Unexpectedly, in addition to binding APC11's RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC(CDH1)-UBCH10∼Ub-substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin-RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin-RING-E2 interactions establish APC's specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3-E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/química , DNA Helicases/química , Proteínas de Ligação a DNA/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
15.
J Biol Chem ; 290(49): 29506-18, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26442587

RESUMO

Autophagy is a conserved degradation process in which autophagosomes are generated by cooperative actions of multiple autophagy-related (Atg) proteins. Previous studies using the model yeast Saccharomyces cerevisiae have provided various insights into the molecular basis of autophagy; however, because of the modest stability of several Atg proteins, structural and biochemical studies have been limited to a subset of Atg proteins, preventing us from understanding how multiple Atg proteins function cooperatively in autophagosome formation. With the goal of expanding the scope of autophagy research, we sought to identify a novel organism with stable Atg proteins that would be advantageous for in vitro analyses. Thus, we focused on a newly isolated thermotolerant yeast strain, Kluyveromyces marxianus DMKU3-1042, to utilize as a novel system elucidating autophagy. We developed experimental methods to monitor autophagy in K. marxianus cells, identified the complete set of K. marxianus Atg homologs, and confirmed that each Atg homolog is engaged in autophagosome formation. Biochemical and bioinformatic analyses revealed that recombinant K. marxianus Atg proteins have superior thermostability and solubility as compared with S. cerevisiae Atg proteins, probably due to the shorter primary sequences of KmAtg proteins. Furthermore, bioinformatic analyses showed that more than half of K. marxianus open reading frames are relatively short in length. These features make K. marxianus proteins broadly applicable as tools for structural and biochemical studies, not only in the autophagy field but also in other fields.


Assuntos
Autofagia , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Fluorometria , Proteínas de Fluorescência Verde , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Microscopia de Fluorescência , Fases de Leitura Aberta , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade
16.
Appl Environ Microbiol ; 82(20): 6150-6157, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520813

RESUMO

Staphylococcus aureus is a human pathogen, and S. aureus bacteremia can cause serious problems in humans. To identify the genes required for bacterial growth in calf serum (CS), a library of S. aureus mutants with randomly inserted transposons were analyzed for growth in CS, and the aspartate semialdehyde dehydrogenase (asd)-inactivated mutant exhibited significantly reduced growth in CS compared with the wild type (WT). The mutant also exhibited significantly reduced growth in medium, mimicking the concentrations of amino acids and glucose in CS. Asd is an essential enzyme for the biosynthesis of lysine, methionine, and threonine from aspartate. We constructed inactivated mutants of the genes for lysine (lysA), methionine (metE), and threonine (thrC) biosynthesis and found that the inactivated mutants of lysA and thrC exhibited significantly lower growth in CS than the WT, but the growth of the metE mutant was similar to that of the WT. The reduced growth of the asd mutant was recovered by addition of 100 µg/ml lysine and threonine in CS. These results suggest that S. aureus requires lysine and threonine biosynthesis to grow in CS. On the other hand, the asd-, lysA-, metE-, and thrC-inactivated mutants exhibited significantly reduced growth in mouse serum compared with the WT. In mouse bacteremia experiments, the asd-, lysA-, metE-, and thrC-inactivated mutants exhibited attenuated virulence compared with WT infection. In conclusion, our results suggest that the biosynthesis of de novo aspartate family amino acids, especially lysine and threonine, is important for staphylococcal bloodstream infection. IMPORTANCE: Studying the growth of bacteria in blood is important for understanding its pathogenicity in the host. Staphylococcus aureus sometimes causes bacteremia or sepsis. However, the factors responsible for S. aureus growth in the blood are not well understood. In this study, using a library of 2,914 transposon-insertional mutants in the S. aureus MW2 strain, we identified the factors responsible for bacterial growth in CS. We found that inactivation of the lysine and threonine biosynthesis genes led to deficient growth in CS. However, the inactivation of these genes did not affect S. aureus growth in general medium. Because the concentration of amino acids in CS is low compared to that in general bacterial medium, our results suggest that lysine and threonine biosynthesis is important for the growth of S. aureus in CS. Our findings provide new insights for S. aureus adaptation in the host and for understanding the pathogenesis of bacteremia.


Assuntos
Ácido Aspártico/metabolismo , Lisina/biossíntese , Soro/metabolismo , Staphylococcus aureus/metabolismo , Treonina/biossíntese , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Meios de Cultura/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
17.
J Biol Chem ; 289(46): 32303-32315, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266727

RESUMO

A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.


Assuntos
Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Membrana Celular/microbiologia , Biologia Computacional , Exotoxinas/metabolismo , Feminino , Teste de Complementação Genética , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Neutrófilos/microbiologia , Mutação Puntual , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Virulência
18.
Cell Microbiol ; 15(4): 503-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23190012

RESUMO

Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 ß1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.


Assuntos
Adesinas Bacterianas/metabolismo , Fibronectinas/metabolismo , Interações Hospedeiro-Patógeno , Streptococcus pyogenes/fisiologia , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Endocitose , Humanos , Integrina alfa5beta1/metabolismo , Streptococcus pyogenes/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(51): 20579-84, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22158902

RESUMO

Cbl-b is a RING-type E3 ubiquitin ligase that functions as a negative regulator of T-cell activation and growth factor receptor and nonreceptor-type tyrosine kinase signaling. Cbl-b dysfunction is related to autoimmune diseases and cancers in humans. However, the molecular mechanism regulating its E3 activity is largely unknown. NMR and small-angle X-ray scattering analyses revealed that the unphosphorylated N-terminal region of Cbl-b forms a compact structure by an intramolecular interaction, which masks the interaction surface of the RING domain with an E2 ubiquitin-conjugating enzyme. Phosphorylation of Y363, located in the helix-linker region between the tyrosine kinase binding and the RING domains, disrupts the interdomain interaction to expose the E2 binding surface of the RING domain. Structural analysis revealed that the phosphorylated helix-RING region forms a compact structure in solution. Moreover, the phosphate group of pY363 is located in the vicinity of the interaction surface with UbcH5B to increase affinity by reducing their electrostatic repulsion. Thus, the phosphorylation of Y363 regulates the E3 activity of Cbl-b by two mechanisms: one is to remove the masking of the RING domain from the tyrosine kinase binding domain and the other is to form a surface to enhance binding affinity to E2.


Assuntos
Doenças Autoimunes/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Ubiquitina-Proteína Ligases/química , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Raios X
20.
J Appl Behav Anal ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600716

RESUMO

In a replication of Daly and K. Dounavi (2020), the researchers evaluated the effect of foreign tact and bidirectional intraverbal teaching on the emergence of untaught relations. Three university students learned three stimulus sets through three types of teaching: native-foreign intraverbal teaching (vocalizing Spanish words that refer to a Japanese textual stimulus), foreign-native intraverbal teaching (reversed relation of native-foreign condition), and foreign-tact teaching (tacting a picture in Spanish). The researchers used an adapted alternating-treatments design to assess the differential effect of each teaching condition on the emergence of untaught relations in a foreign language and collected data on response maintenance. The results replicated previous findings that native-foreign intraverbal and foreign-tact teachings were more effective than foreign-native intraverbal teaching despite previous reporting that the maintenance outcomes may be a result of carryover effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA