Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
2.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681457

RESUMO

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Assuntos
Neoplasias da Próstata/patologia , Biomarcadores Tumorais/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Estudos Prospectivos , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341658

RESUMO

MOTIVATION: The volume of biomedical data generated each year is growing exponentially as high-throughput molecular, imaging and mHealth technologies expand. This rise in data volume has contributed to an increasing reliance on and demand for computational methods, and consequently to increased attention to software quality and data integrity. RESULTS: To simplify data verification in diverse data-processing pipelines, we created PipeVal, a light-weight, easy-to-use, extensible tool for file validation. It is open-source, easy to integrate with complex workflows, and modularized for extensibility for new file formats. PipeVal can be rapidly inserted into existing methods and pipelines to automatically validate and verify inputs and outputs. This can reduce wasted compute time attributed to file corruption or invalid file paths, and significantly improve the quality of data-intensive software. AVAILABILITY AND IMPLEMENTATION: PipeVal is an open-source Python package under the GPLv2 license and it is freely available at https://github.com/uclahs-cds/package-PipeVal. The docker image is available at: https://github.com/uclahs-cds/package-PipeVal/pkgs/container/pipeval.


Assuntos
Software , Fluxo de Trabalho
4.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341660

RESUMO

MOTIVATION: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software development practices to avoid errors in individual tools and in the connections between them. RESULTS: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous biomedical workflow testing and paves the way toward reducing computational errors in biomedicine. AVAILABILITY AND IMPLEMENTATION: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https://github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.


Assuntos
Biologia Computacional , Software , Algoritmos , Idioma , Fluxo de Trabalho
5.
Nature ; 541(7637): 359-364, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28068672

RESUMO

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Assuntos
Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Cromotripsia , Variações do Número de Cópias de DNA , Metilação de DNA , Exoma/genética , Humanos , Masculino , Metástase Neoplásica/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Recidiva
6.
BMC Bioinformatics ; 19(1): 339, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253747

RESUMO

BACKGROUND: Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. However, verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true error profile. RESULTS: To determine how to create subsets of predictions for validation that maximize accuracy of global error profile inference, we developed Valection, a software program that implements multiple strategies for the selection of verification candidates. We evaluated these selection strategies on one simulated and two experimental datasets. CONCLUSIONS: Valection is implemented in multiple programming languages, available at: http://labs.oicr.on.ca/boutros-lab/software/valection.


Assuntos
Análise de Sequência de DNA/métodos , Validação de Programas de Computador
7.
BMC Bioinformatics ; 19(1): 28, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385983

RESUMO

BACKGROUND: The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. RESULTS: The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. CONCLUSIONS: The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.


Assuntos
Genoma Humano , Células Germinativas/metabolismo , Polimorfismo de Nucleotídeo Único , Algoritmos , Humanos , Internet , Neoplasias/genética , Neoplasias/patologia , Interface Usuário-Computador , Sequenciamento Completo do Genoma
8.
Nat Methods ; 12(7): 623-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984700

RESUMO

The detection of somatic mutations from cancer genome sequences is key to understanding the genetic basis of disease progression, patient survival and response to therapy. Benchmarking is needed for tool assessment and improvement but is complicated by a lack of gold standards, by extensive resource requirements and by difficulties in sharing personal genomic information. To resolve these issues, we launched the ICGC-TCGA DREAM Somatic Mutation Calling Challenge, a crowdsourced benchmark of somatic mutation detection algorithms. Here we report the BAMSurgeon tool for simulating cancer genomes and the results of 248 analyses of three in silico tumors created with it. Different algorithms exhibit characteristic error profiles, and, intriguingly, false positives show a trinucleotide profile very similar to one found in human tumors. Although the three simulated tumors differ in sequence contamination (deviation from normal cell sequence) and in subclonality, an ensemble of pipelines outperforms the best individual pipeline in all cases. BAMSurgeon is available at https://github.com/adamewing/bamsurgeon/.


Assuntos
Benchmarking , Crowdsourcing , Genoma , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Humanos
9.
BMC Cancer ; 18(1): 8, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295717

RESUMO

BACKGROUND: Invasive cribriform and intraductal carcinoma (CR/IDC) is associated with adverse outcome of prostate cancer patients. The aim of this study was to determine the molecular aberrations associated with CR/IDC in primary prostate cancer, focusing on genomic instability and somatic copy number alterations (CNA). METHODS: Whole-slide images of The Cancer Genome Atlas Project (TCGA, N = 260) and the Canadian Prostate Cancer Genome Network (CPC-GENE, N = 199) radical prostatectomy datasets were reviewed for Gleason score (GS) and presence of CR/IDC. Genomic instability was assessed by calculating the percentage of genome altered (PGA). Somatic copy number alterations (CNA) were determined using Fisher-Boschloo tests and logistic regression. Primary analysis were performed on TCGA (N = 260) as discovery and CPC-GENE (N = 199) as validation set. RESULTS: CR/IDC growth was present in 80/260 (31%) TCGA and 76/199 (38%) CPC-GENE cases. Patients with CR/IDC and ≥ GS 7 had significantly higher PGA than men without this pattern in both TCGA (2.2 fold; p = 0.0003) and CPC-GENE (1.7 fold; p = 0.004) cohorts. CR/IDC growth was associated with deletions of 8p, 16q, 10q23, 13q22, 17p13, 21q22, and amplification of 8q24. CNAs comprised a total of 1299 gene deletions and 369 amplifications in the TCGA dataset, of which 474 and 328 events were independently validated, respectively. Several of the affected genes were known to be associated with aggressive prostate cancer such as loss of PTEN, CDH1, BCAR1 and gain of MYC. Point mutations in TP53, SPOP and FOXA1were also associated with CR/IDC, but occurred less frequently than CNAs. CONCLUSIONS: CR/IDC growth is associated with increased genomic instability clustering to genetic regions involved in aggressive prostate cancer. Therefore, CR/IDC is a pathologic substrate for progressive molecular tumour derangement.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinoma Intraductal não Infiltrante/genética , Variações do Número de Cópias de DNA , Instabilidade Genômica , Genômica/métodos , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Idoso , Carcinoma Intraductal não Infiltrante/patologia , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/patologia
10.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585946

RESUMO

Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteoform diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively enumerates proteoforms in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it detects and quantifies previously unobserved noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient identification and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39158404

RESUMO

BACKGROUND: Localized prostate tumors show significant spatial heterogeneity, with regions of high-grade disease adjacent to lower-grade disease. Consequently, prostate cancer biopsies are prone to sampling bias, potentially leading to underestimation of tumor grade. To study the clinical, epidemiologic and molecular hallmarks of this phenomenon, we conducted a prospective study of grade upgrading: differences in detected prostate cancer grade between biopsy and surgery. METHODS: We established a prospective, multi-institutional cohort of men with Grade Group 1 (GG1) prostate cancer on biopsy who underwent radical prostatectomy. Upgrading was defined as detection of GG2+ in the resected tumor. Germline DNA from 192 subjects was subjected to whole-genome sequencing to quantify ancestry, pathogenic variants in DNA damage response genes and polygenic risk. RESULTS: Of 285 men, 67% upgraded at surgery. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores were significantly associated with upgrading. No assessed genetic risk factor was predictive of upgrading, including polygenic risk scores for prostate cancer diagnosis. CONCLUSIONS: In a cohort of low-grade prostate cancer patients, a majority upgraded at radical prostatectomy. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores portended the presence of higher-grade disease, while germline genetics was not informative in this setting. Patients with low-risk prostate cancer, but elevated PSA density or percent cancer in positive biopsy cores, may benefit from repeat biopsy, additional imaging or other approaches to complement active surveillance. IMPACT: Further risk stratification of patients with low-risk prostate cancer may provide useful context for active surveillance decision-making.

12.
Cancer Res Commun ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166898

RESUMO

Prostate cancer is frequently treated with radiotherapy. Unfortunately, aggressive radioresistant relapses can arise, and the molecular underpinnings of radioresistance are unknown. Modern clinical radiotherapy is evolving to deliver higher doses of radiation in fewer fractions (hypofractionation). We therefore analyzed genomic, transcriptomic and proteomic data to characterize prostate cancer radioresistance in cells treated with both conventionally fractionated and hypofractionated radiotherapy. Independent of fractionation schedule, resistance to radiotherapy involved massive genomic instability and abrogation of DNA mismatch repair. Specific prostate cancer driver genes were modulated at the RNA and protein levels, with distinct protein subcellular responses to radiotherapy. Conventional fractionation led to a far more aggressive biomolecular response than hypofractionation. Testing pre-clinical candidates identified in cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. POLQ-modulated radioresistance in model systems and was predictive of it in large patient cohorts. The molecular response to radiation is highly multi-modal, and sheds light on prostate cancer lethality.

13.
Cell Rep ; 43(3): 113826, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412093

RESUMO

Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação/genética , Genômica
14.
J Natl Cancer Inst ; 115(4): 468-472, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610996

RESUMO

Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Prognóstico , Predisposição Genética para Doença
15.
Nat Med ; 29(6): 1370-1378, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188783

RESUMO

Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Anticorpos Monoclonais Humanizados , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
16.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
17.
Nat Commun ; 12(1): 6893, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824250

RESUMO

Replicative immortality is a hallmark of cancer, and can be achieved through telomere lengthening and maintenance. Although the role of telomere length in cancer has been well studied, its association to genomic features is less well known. Here, we report the telomere lengths of 392 localized prostate cancer tumours and characterize their relationship to genomic, transcriptomic and proteomic features. Shorter tumour telomere lengths are associated with elevated genomic instability, including single-nucleotide variants, indels and structural variants. Genes involved in cell proliferation and signaling are correlated with tumour telomere length at all levels of the central dogma. Telomere length is also associated with multiple clinical features of a tumour. Longer telomere lengths in non-tumour samples are associated with a lower rate of biochemical relapse. In summary, we describe the multi-level integration of telomere length, genomics, transcriptomics and proteomics in localized prostate cancer.


Assuntos
Neoplasias da Próstata/genética , Telômero/genética , Variações do Número de Cópias de DNA , Epigenoma , Fusão Gênica , Genômica , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteoma , Telomerase/genética , Telomerase/metabolismo , Transcriptoma
18.
J Natl Cancer Inst ; 113(6): 742-751, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429428

RESUMO

BACKGROUND: Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy. METHODS: In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided. RESULTS: Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03). CONCLUSIONS: Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.


Assuntos
Neoplasias Orofaríngeas , Quimiorradioterapia/métodos , Humanos , Neoplasias Orofaríngeas/radioterapia , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Dosagem Radioterapêutica , Hipóxia Tumoral
19.
Nat Commun ; 11(1): 441, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974375

RESUMO

Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Mutação , Neoplasias da Próstata/genética , Sequências Reguladoras de Ácido Nucleico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fatores de Transcrição/metabolismo
20.
Cancer Cell ; 36(6): 674-689.e6, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31735626

RESUMO

Thousands of noncoding somatic single-nucleotide variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1, and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators' tumor cistromes, exemplified at the 8q24 locus harboring both risk variants and somatic SNVs in cis-regulatory elements upregulating MYC expression. However, Massively Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual cis-regulatory elements. Instead, similar to inherited risk variants, SNVs accumulate in cistromes of master transcription regulators required for prostate cancer development.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Humanos , Masculino , Mutação/genética , Neoplasias da Próstata/patologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA