Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(W1): W207-W215, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019643

RESUMO

Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes.


Assuntos
Visualização de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Internet , Transcriptoma/genética , Animais , COVID-19/genética , COVID-19/virologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Imunidade Inata , Nasofaringe/virologia , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Especificidade da Espécie , Fluxo de Trabalho
2.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298863

RESUMO

Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.


Assuntos
Fosfatase Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequência de Aminoácidos , Brassicaceae/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Genoma de Planta/genética , Mitocôndrias/genética
3.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38267027

RESUMO

All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Resposta a Proteínas não Dobradas , Proteínas de Ciclo Celular/genética , Dano ao DNA , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética
4.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075089

RESUMO

The micronutrient vitamin B12 is an essential cofactor for two enzymes: methionine synthase, which plays a key role in the one-carbon cycle; and methylmalonyl-CoA mutase, an enzyme in a pathway that breaks down branched-chain amino acids and odd-chain fatty acids. A second, vitamin B12-independent pathway that degrades propionic acid was recently described in Caenorhabditis elegans, the propionate shunt pathway. Activation of five shunt pathway genes in response to low vitamin B12 availability or high propionic acid levels is accomplished by a transcriptional regulatory mechanism involving two nuclear hormone receptors, NHR-10 and NHR-68. Here, we report that the C. elegans Mediator subunit mdt-15 is also essential for the activation of the propionate shunt pathway genes, likely by acting as a transcriptional coregulator for NHR-10. C. elegans mdt-15 mutants fed with a low vitamin B12 diet have transcriptomes resembling those of wild-type worms fed with a high vitamin B12 diet, with low expression of the shunt genes. Phenotypically, the embryonic lethality of mdt-15 mutants is specifically rescued by diets high in vitamin B12, but not by dietary polyunsaturated fatty acids, which rescue many other phenotypes of the mdt-15 mutants. Finally, NHR-10 binds to MDT-15 in yeast two-hybrid assays, and the transcriptomes of nhr-10 mutants share overlap with those of mdt-15 mutants. Our data show that MDT-15 is a key coregulator for an NHR regulating propionic acid detoxification, adding to roles played by NHR:MDT-15 partnerships in metabolic regulation and pinpointing vitamin B12 availability as a requirement for mdt-15 dependent embryonic development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Propionatos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Vitamina B 12/metabolismo , Fatores de Transcrição/genética
5.
Front Plant Sci ; 9: 982, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042778

RESUMO

Phosphorylation of the transit peptides of nuclear-encoded preprotein is a well-known regulatory process of protein import in plant chloroplasts. In the Arabidopsis Protein Phosphorylation Site Database, 103 out of 802 mitochondrial proteins were found to contain one or more experimentally proven phosphorylation sites in their first 60 amino acid residues. Analysis of the N-terminal sequences of selected mitochondrial preproteins and their homologs from 64 plant species showed high conservation among phosphorylation sites. The ability of kinases from various sources including leaf extract (LE), root extract (RE), wheat germ lysate (WGL), and STY kinases to phosphorylate N-terminal sequences of several respiratory chain proteins were examined by in vitro kinase assays. The three STY kinases were shown to phosphorylate the N-terminal sequences of some proteins we tested but exhibited different specificities. Interestingly, the N-terminal sequences of two mitochondrial ATP synthase beta subunit 1/3 (pF1ß-1/3) could be phosphorylated by LE and RE but not by STY kinases, suggesting that there are uncharacterized presequence-phosphorylating kinases other than STY kinases present in RE and LE. Mitochondrial import studies showed that the import of RRL-synthesized pF1ßs was impeded by the treatment of LE, and the addition of a short SSU transit peptide containing a phosphorylatable 14-3-3 binding site could enhance the import of LE-treated pF1ßs. Our results suggested that the transit peptide of pSSU can compete with the presequences of pF1ßs for an uncharacterized kinase(s) in leaf. Altogether, our data showed that phosphorylation of transit peptides/presequences are not uncommon for chloroplast-targeted and mitochondria-targeted proteins, albeit possibly differentially regulated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA