Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 574(7777): 278-282, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578520

RESUMO

In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes that, by assembling onto specialized Cenp-A nucleosomes1,2, function to connect centromeric chromatin to microtubules of the mitotic spindle3,4. Whereas the centromeres of vertebrate chromosomes comprise millions of DNA base pairs and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules5,6. All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-ANuc), each of which is perfectly centred on its cognate centromere7-9. The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here we describe the cryo-electron microscopy structure of the Saccharomyces cerevisiae inner kinetochore module, the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-ANuc). The structure explains the interdependency of the constituent subcomplexes of CCAN and shows how the Y-shaped opening of CCAN accommodates Cenp-ANuc to enable specific CCAN subunits to contact the nucleosomal DNA and histone subunits. Interactions with the unwrapped DNA duplex at the two termini of Cenp-ANuc are mediated predominantly by a DNA-binding groove in the Cenp-L-Cenp-N subcomplex. Disruption of these interactions impairs assembly of CCAN onto Cenp-ANuc. Our data indicate a mechanism of Cenp-A nucleosome recognition by CCAN and how CCAN acts as a platform for assembly of the outer kinetochore to link centromeres to the mitotic spindle for chromosome segregation.


Assuntos
Proteína Centromérica A/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/ultraestrutura , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Cinetocoros/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Nucleossomos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
2.
Langmuir ; 40(17): 8992-9000, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634657

RESUMO

The present study utilizes styrene as a raw material to prepare hyper-cross-linked polystyrene nanospheres (HPSs) through the Friedel-Crafts reaction, establishing stable covalent bond structures within the polymer chains. The hydrophilic polystyrene nanospheres─TMA@SHPSs were successfully synthesized via sulfonation and ion exchange reactions, demonstrating exceptional properties in reducing friction and wear. Compared with pure water, the addition of 4.0 wt % TMA@SHPSs results in a 62.2% reduction in the friction coefficient, accompanied by a significant decrease to 1.17 × 105 µm3 in wear volume. The results demonstrate that TMA@SHPSs, as water-based lubrication additives, generate composite protective films (tribo-chemical protective films and physical protective films) during the friction process, which effectively prevents direct contact between the friction pairs and achieves remarkable antifriction and antiwear effects. The results of the antimicrobial activity test indicate that TMA@SHPSs demonstrate exceptional antibacterial efficacy due to the bacteriostatic effect induced by hydration and the bactericidal properties of quaternary ammonium cations.

3.
Proc Natl Acad Sci U S A ; 117(27): 15609-15619, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571953

RESUMO

Ribosome biogenesis is a complex process, and dozens of factors are required to facilitate and regulate the subunit assembly in bacteria. The 2'-O-methylation of U2552 in 23S rRNA by methyltransferase RrmJ is a crucial step in late-stage assembly of the 50S subunit. Its absence results in severe growth defect and marked accumulation of pre50S assembly intermediates. In the present work, we employed cryoelectron microscopy to characterize a set of late-stage pre50S particles isolated from an Escherichia coli ΔrrmJ strain. These assembly intermediates (solved at 3.2 to 3.8 Å resolution) define a collection of late-stage particles on a progressive assembly pathway. Apart from the absence of L16, L35, and L36, major structural differences between these intermediates and the mature 50S subunit are clustered near the peptidyl transferase center, such as H38, H68-71, and H89-93. In addition, the ribosomal A-loop of the mature 50S subunit from ΔrrmJ strain displays large local flexibility on nucleotides next to unmethylated U2552. Fast kinetics-based biochemical assays demonstrate that the ΔrrmJ 50S subunit is only 50% active and two times slower than the WT 50S subunit in rapid subunit association. While the ΔrrmJ 70S ribosomes show no defect in peptide bond formation, peptide release, and ribosome recycling, they translocate with 20% slower rate than the WT ribosomes in each round of elongation. These defects amplify during synthesis of the full-length proteins and cause overall defect in protein synthesis. In conclusion, our data reveal the molecular roles of U2552 methylation in both ribosome biogenesis and protein translation.


Assuntos
Escherichia coli/fisiologia , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Técnicas de Inativação de Genes , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Uridina/metabolismo
4.
Nature ; 537(7622): 639-43, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27654917

RESUMO

The respiratory chain complexes I, III and IV (CI, CIII and CIV) are present in the bacterial membrane or the inner mitochondrial membrane and have a role of transferring electrons and establishing the proton gradient for ATP synthesis by complex V. The respiratory chain complexes can assemble into supercomplexes (SCs), but their precise arrangement is unknown. Here we report a 5.4 Å cryo-electron microscopy structure of the major 1.7 megadalton SCI1III2IV1 respirasome purified from porcine heart. The CIII dimer and CIV bind at the same side of the L-shaped CI, with their transmembrane domains essentially aligned to form a transmembrane disk. Compared to free CI, the CI in the respirasome is more compact because of interactions with CIII and CIV. The NDUFA11 and NDUFB9 supernumerary subunits of CI contribute to the oligomerization of CI and CIII. The structure of the respirasome provides information on the precise arrangements of the respiratory chain complexes in mitochondria.


Assuntos
Respiração Celular , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Animais , Sítios de Ligação , Transporte de Elétrons , Complexo I de Transporte de Elétrons/isolamento & purificação , Mitocôndrias/ultraestrutura , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Suínos
5.
Nature ; 534(7605): 133-7, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251291

RESUMO

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sequência de Bases , Domínio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Nucleic Acids Res ; 43(21): 10525-33, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26432831

RESUMO

During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.


Assuntos
Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , Ribossomos/química , Microscopia Crioeletrônica , Mutação , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
7.
Nucleic Acids Res ; 42(21): 13430-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25389271

RESUMO

Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação ao GTP/química , Subunidades Ribossômicas Maiores de Bactérias/química , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
8.
Plant Commun ; 5(1): 100776, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38050355

RESUMO

Cellular hormone homeostasis is essential for precise spatial and temporal signaling responses and plant fitness. Abscisic acid (ABA) plays pivotal roles in orchestrating various developmental and stress responses and confers fitness benefits over ecological and evolutionary timescales in terrestrial plants. Cellular ABA level is regulated by complex processes, including biosynthesis, catabolism, and transport. AtABCG25 is the first ABA exporter identified through genetic screening and affects diverse ABA responses. Resolving the structural basis of ABA export by ABCG25 is critical for further manipulations of ABA homeostasis and plant fitness. We used cryo-electron microscopy to elucidate the structural dynamics of AtABCG25 and successfully characterized different states, including apo AtABCG25, ABA-bound AtABCG25, and ATP-bound AtABCG25 (E232Q). Notably, AtABCG25 forms a homodimer that features a deep, slit-like cavity in the transmembrane domain, and we precisely characterized the critical residues in the cavity where ABA binds. ATP binding triggers closure of the nucleotide-binding domains and conformational transitions in the transmembrane domains. We show that AtABCG25 belongs to a conserved ABCG subfamily that originated during the evolution of angiosperms. This subfamily neofunctionalized to regulate seed germination via the endosperm, in concert with the evolution of this angiosperm-specific, embryo-nourishing tissue. Collectively, these findings provide valuable insights into the intricate substrate recognition and transport mechanisms of the ABA exporter AtABCG25, paving the way for genetic manipulation of ABA homeostasis and plant fitness.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopia Crioeletrônica , Trifosfato de Adenosina/metabolismo
9.
ACS Appl Mater Interfaces ; 16(23): 30453-30461, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832492

RESUMO

Hydrogels are ideal for antifouling materials due to their high hydrophilicity and low adhesion properties. Herein, poly(ionic liquid) hydrogels integrated with zwitterionic copolymer-functionalized gallium-based liquid metal (PMPC-GLM) microgels were successfully prepared by a one-pot reaction. Poly(ionic liquid) hydrogels (IL-Gel) were obtained by chemical cross-linking the copolymer of ionic liquid, acrylic acid, and acrylamide, and the introduction of ionic liquid (IL) significantly increased the cross-linking density; this approach consequently enhanced the mechanical and antiswelling properties of the hydrogels. The swelling ratio of IL-Gel decreased eight times compared to the original hydrogels. PMPC-GLM microgels were prepared through grafting the zwitterionic polymer PMPC onto the GLM nanodroplet surface, which exhibited efficient antifouling performance attributed to the bactericidal effect of Ga3+ and the antibacterial effect of the zwitterionic polymer layer PMPC. Based on the synergistic effect of PMPC-GLM microgels and IL, the composite hydrogels PMPC-GLM@IL-Gel not only exhibited excellent mechanical and antiswelling properties but also showed outstanding antibacterial and antifouling properties. Consequently, PMPC-GLM@IL-Gel hydrogels achieved inhibition rates of over 90% against bacteria and more than 85% against microalgae.

10.
Nat Plants ; 10(3): 374-380, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38413824

RESUMO

Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers1. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components2-5. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation6-11. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeFx-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeFx-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nucleossomos/metabolismo , Metilação de DNA , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Plantas/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Nat Plants ; 9(2): 271-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624257

RESUMO

Active DNA demethylation plays a crucial role in eukaryotic gene imprinting and antagonizing DNA methylation. The plant-specific REPRESSOR OF SILENCING 1/DEMETER (ROS1/DME) family of enzymes directly excise 5-methyl-cytosine (5mC), representing an efficient DNA demethylation pathway distinct from that of animals. Here, we report the cryo-electron microscopy structures of an Arabidopsis ROS1 catalytic fragment in complex with substrate DNA, mismatch DNA and reaction intermediate, respectively. The substrate 5mC is flipped-out from the DNA duplex and subsequently recognized by the ROS1 base-binding pocket through hydrophobic and hydrogen-bonding interactions towards the 5-methyl group and Watson-Crick edge respectively, while the different protonation states of the bases determine the substrate preference for 5mC over T:G mismatch. Together with the structure of the reaction intermediate complex, our structural and biochemical studies revealed the molecular basis for substrate specificity, as well as the reaction mechanism underlying 5mC demethylation by the ROS1/DME family of plant-specific DNA demethylases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Glicosilases , Animais , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Proteínas Tirosina Quinases/metabolismo , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desmetilação do DNA , Microscopia Crioeletrônica , Proteínas Proto-Oncogênicas/metabolismo , Arabidopsis/genética , Plantas/genética , Proteínas Nucleares/metabolismo
12.
Nat Commun ; 14(1): 1118, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869038

RESUMO

Pannexin 2 (Panx2) is a large-pore ATP-permeable channel with critical roles in various physiological processes, such as the inflammatory response, energy production and apoptosis. Its dysfunction is related to numerous pathological conditions including ischemic brain injury, glioma and glioblastoma multiforme. However, the working mechanism of Panx2 remains unclear. Here, we present the cryo-electron microscopy structure of human Panx2 at a resolution of 3.4 Å. Panx2 structure assembles as a heptamer, forming an exceptionally wide channel pore across the transmembrane and intracellular domains, which is compatible with ATP permeation. Comparing Panx2 with Panx1 structures in different states reveals that the Panx2 structure corresponds to an open channel state. A ring of seven arginine residues located at the extracellular entrance forms the narrowest site of the channel, which serves as the critical molecular filter controlling the permeation of substrate molecules. This is further verified by molecular dynamics simulations and ATP release assays. Our studies reveal the architecture of the Panx2 channel and provide insights into the molecular mechanism of its channel gating.


Assuntos
Apoptose , Arginina , Conexinas , Humanos , Trifosfato de Adenosina , Microscopia Crioeletrônica , Proteínas do Tecido Nervoso
13.
Nat Commun ; 14(1): 3424, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296152

RESUMO

ClC-2 transports chloride ions across plasma membranes and plays critical roles in cellular homeostasis. Its dysfunction is involved in diseases including leukodystrophy and primary aldosteronism. AK-42 was recently reported as a specific inhibitor of ClC-2. However, experimental structures are still missing to decipher its inhibition mechanism. Here, we present cryo-EM structures of apo ClC-2 and its complex with AK-42, both at 3.5 Å resolution. Residues S162, E205 and Y553 are involved in chloride binding and contribute to the ion selectivity. The side-chain of the gating glutamate E205 occupies the putative central chloride-binding site, indicating that our structure represents a closed state. Structural analysis, molecular dynamics and electrophysiological recordings identify key residues to interact with AK-42. Several AK-42 interacting residues are present in ClC-2 but not in other ClCs, providing a possible explanation for AK-42 specificity. Taken together, our results experimentally reveal the potential inhibition mechanism of ClC-2 inhibitor AK-42.


Assuntos
Canais de Cloro CLC-2 , Canais de Cloreto , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Membrana Celular/metabolismo
14.
Sci Adv ; 8(49): eadd4187, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490350

RESUMO

As the prototype of unconventional myosin motor family, myosin Va (MyoVa) transport cellular cargos along actin filaments in diverse cellular processes. The off-duty MyoVa adopts a closed and autoinhibited state, which can be relieved by cargo binding. The molecular mechanisms governing the autoinhibition and activation of MyoVa remain unclear. Here, we report the cryo-electron microscopy structure of the two full-length, closed MyoVa heavy chains in complex with 12 calmodulin light chains at 4.78-Å resolution. The MyoVa adopts a triangular structure with multiple intra- and interpolypeptide chain interactions in establishing the closed state with cargo binding and adenosine triphosphatase activity inhibited. Structural, biochemical, and cellular analyses uncover an asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two MyoVa heavy chains are differently protected. Thus, specific and efficient MyoVa activation requires coincident binding of multiple cargo adaptors, revealing an intricate and elegant activity regulation of the motor in response to cargos.

15.
Cell Rep ; 34(13): 108929, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789095

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls cell cycle transitions. Its regulation by the spindle assembly checkpoint (SAC) is coordinated with the attachment of sister chromatids to the mitotic spindle. APC/C SUMOylation on APC4 ensures timely anaphase onset and chromosome segregation. To understand the structural and functional consequences of APC/C SUMOylation, we reconstituted SUMOylated APC/C for electron cryo-microscopy and biochemical analyses. SUMOylation of the APC/C causes a substantial rearrangement of the WHB domain of APC/C's cullin subunit (APC2WHB). Although APC/CCdc20 SUMOylation results in a modest impact on normal APC/CCdc20 activity, repositioning APC2WHB reduces the affinity of APC/CCdc20 for the mitotic checkpoint complex (MCC), the effector of the SAC. This attenuates MCC-mediated suppression of APC/CCdc20 activity, allowing for more efficient ubiquitination of APC/CCdc20 substrates in the presence of the MCC. Thus, SUMOylation stimulates the reactivation of APC/CCdc20 when the SAC is silenced, contributing to timely anaphase onset.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Sumoilação , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mitose , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinação
16.
Nat Struct Mol Biol ; 25(12): 1103-1110, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478265

RESUMO

Kinetochores are multicomponent complexes responsible for coordinating the attachment of centromeric DNA to mitotic-spindle microtubules. The point centromeres of budding yeast are organized into three centromeric determining elements (CDEs), and are associated with the centromere-specific nucleosome Cse4. Deposition of Cse4 at CEN loci is dependent on the CBF3 complex that engages CDEIII to direct Cse4 nucleosomes to CDEII. To understand how CBF3 recognizes CDEIII and positions Cse4, we determined a cryo-EM structure of a CBF3-CEN complex. CBF3 interacts with CEN DNA as a head-to-head dimer that includes the whole of CDEIII and immediate 3' regions. Specific CEN-binding of CBF3 is mediated by a Cep3 subunit of one of the CBF3 protomers that forms major groove interactions with the conserved and essential CCG and TGT motifs of CDEIII. We propose a model for a CBF3-Cse4-CEN complex with implications for understanding CBF3-directed deposition of the Cse4 nucleosome at CEN loci.


Assuntos
Proteínas de Ligação a DNA/química , Cinetocoros/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
17.
Nat Struct Mol Biol ; 24(3): 214-220, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28112732

RESUMO

A key step in ribosome biogenesis is the nuclear export of pre-ribosomal particles. Nmd3, a highly conserved protein in eukaryotes, is a specific adaptor required for the export of pre-60S particles. Here we used cryo-electron microscopy (cryo-EM) to characterize Saccharomyces cerevisiae pre-60S particles purified with epitope-tagged Nmd3. Our structural analysis indicates that these particles belong to a specific late stage of cytoplasmic pre-60S maturation in which ribosomal proteins uL16, uL10, uL11, eL40 and eL41 are deficient, but ribosome assembly factors Nmd3, Lsg1, Tif6 and Reh1 are present. Nmd3 and Lsg1 are located near the peptidyl-transferase center (PTC). In particular, Nmd3 recognizes the PTC in its near-mature conformation. In contrast, Reh1 is anchored to the exit of the polypeptide tunnel, with its C terminus inserted into the tunnel. These findings pinpoint a structural checkpoint role for Nmd3 in PTC assembly, and provide information about functional and mechanistic roles of these assembly factors in the maturation of the 60S ribosomal subunit.


Assuntos
Citoplasma/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/ultraestrutura , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
18.
Protein Cell ; 7(3): 187-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850260

RESUMO

The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Humanos , Domínios Proteicos , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nat Struct Mol Biol ; 23(2): 125-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26809121

RESUMO

EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Estrutura Terciária de Proteína , Transporte de RNA , Aminoacil-RNA de Transferência/química , Subunidades Ribossômicas Maiores de Bactérias/química
20.
Elife ; 42015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26670735

RESUMO

Regulation of translating ribosomes is a major component of gene expression control network. In Escherichia coli, ribosome stalling by the C-terminal arrest sequence of SecM regulates the SecA-dependent secretion pathway. Previous studies reported many residues of SecM peptide and ribosome exit tunnel are critical for stalling. However, the underlying molecular mechanism is still not clear at the atomic level. Here, we present two cryo-EM structures of the SecM-stalled ribosomes at 3.3-3.7 Å resolution, which reveal two different stalling mechanisms at distinct elongation steps of the translation cycle: one is due to the inactivation of ribosomal peptidyl-transferase center which inhibits peptide bond formation with the incoming prolyl-tRNA; the other is the prolonged residence of the peptidyl-RNA at the hybrid A/P site which inhibits the full-scale tRNA translocation. These results demonstrate an elegant control of translation cycle by regulatory peptides through a continuous, dynamic reshaping of the functional center of the ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA