Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507462

RESUMO

The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein in vivo and its impact on immune cells remains incompletely elucidated. In this study, we inoculated mice intranasally, intravenously, and subcutaneously with fluorescently labeled recombinant SARS-CoV-2 Spike protein. Using flow cytometry and imaging techniques, we analyzed its localization, immune cell tropism, and acute functional impact. Intranasal administration led to rapid lung alveolar macrophage uptake, pulmonary vascular leakage, and neutrophil recruitment and damage. When injected near the inguinal lymph node medullary, but not subcapsular macrophages, captured the protein, while scrotal injection recruited and fragmented neutrophils. Widespread endothelial and liver Kupffer cell uptake followed intravenous administration. Human peripheral blood cells B cells, neutrophils, monocytes, and myeloid dendritic cells all efficiently bound Spike protein. Exposure to the Spike protein enhanced neutrophil NETosis and augmented human macrophage TNF-α (tumor necrosis factor-α) and IL-6 production. Human and murine immune cells employed C-type lectin receptors and Siglecs to help capture the Spike protein. This study highlights the potential toxicity of the SARS-CoV-2 Spike protein for mammalian cells and illustrates the central role for alveolar macrophage in pathogenic protein uptake.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Macrófagos Alveolares , SARS-CoV-2/metabolismo , Vacinas contra COVID-19 , Infiltração de Neutrófilos , Fator de Necrose Tumoral alfa , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37090605

RESUMO

The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein in vivo and its impact on immune cells remains incompletely elucidated. In this study we inoculated mice intranasally, intravenously, and subcutaneously with fluorescently labeled recombinant SARS-CoV-2 Spike protein. Using flow cytometry and imaging techniques we analyzed its localization, immune cell tropism, and acute functional impact. Intranasal administration led to rapid lung alveolar macrophage uptake, pulmonary vascular leakage, and neutrophil recruitment and damage. When injected near the inguinal lymph node medullary, but not subcapsular macrophages, captured the protein, while scrotal injection recruited and fragmented neutrophils. Wide-spread endothelial and liver Kupffer cell uptake followed intravenous administration. Human peripheral blood cells B cells, neutrophils, monocytes, and myeloid dendritic cells all efficiently bound Spike protein. Exposure to the Spike protein enhanced neutrophil NETosis and augmented human macrophage TNF-α and IL-6 production. Human and murine immune cells employed C-type lectin receptors and Siglecs to help capture the Spike protein. This study highlights the potential toxicity of the SARS-CoV-2 Spike protein for mammalian cells and illustrates the central role for alveolar macrophage in pathogenic protein uptake.

3.
Front Immunol ; 12: 679856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135907

RESUMO

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαißγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


Assuntos
Senescência Celular , Quimiotaxia de Leucócito , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Senescência Celular/genética , Senescência Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA