Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nature ; 615(7950): 73-79, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813959

RESUMO

Avoiding excessive agricultural nitrogen (N) use without compromising yields has long been a priority for both research and government policy in China1,2. Although numerous rice-related strategies have been proposed3-5, few studies have assessed their impacts on national food self-sufficiency and environmental sustainability and fewer still have considered economic risks faced by millions of smallholders. Here we established an optimal N rate strategy based on maximizing either economic (ON) or ecological (EON) performance using new subregion-specific models. Using an extensive on-farm dataset, we then assessed the risk of yield losses among smallholder farmers and the challenges of implementing the optimal N rate strategy. We find that meeting national rice production targets in 2030 is possible while concurrently reducing nationwide N consumption by 10% (6-16%) and 27% (22-32%), mitigating reactive N (Nr) losses by 7% (3-13%) and 24% (19-28%) and increasing N-use efficiency by 30% (3-57%) and 36% (8-64%) for ON and EON, respectively. This study identifies and targets subregions with disproportionate environmental impacts and proposes N rate strategies to limit national Nr pollution below proposed environmental thresholds, without compromising soil N stocks or economic benefits for smallholders. Thereafter, the preferable N strategy is allocated to each region based on the trade-off between economic risk and environmental benefit. To facilitate the adoption of the annually revised subregional N rate strategy, several recommendations were provided, including a monitoring network, fertilization quotas and smallholder subsidies.


Assuntos
Agricultura , Produtos Agrícolas , Ambientalismo , Nitrogênio , Oryza , Desenvolvimento Sustentável , Agricultura/economia , Agricultura/métodos , China , Fertilizantes/análise , Fertilizantes/economia , Nitrogênio/análise , Nitrogênio/economia , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Produtos Agrícolas/economia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/provisão & distribuição , Ecologia , Fazendeiros , Conjuntos de Dados como Assunto , Abastecimento de Alimentos
2.
PLoS Genet ; 19(11): e1011031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956204

RESUMO

PIWI proteins and their associated piRNAs act to silence transposons and promote gametogenesis. Murine PIWI proteins MIWI, MILI, and MIWI2 have multiple arginine and glycine (RG)-rich motifs at their N-terminal domains. Despite being known as docking sites for the TDRD family proteins, the in vivo regulatory roles for these RG motifs in directing PIWI in piRNA biogenesis and spermatogenesis remain elusive. To investigate the functional significance of RG motifs in mammalian PIWI proteins in vivo, we genetically engineered an arginine to lysine (RK) point mutation of a conserved N-terminal RG motif in MIWI in mice. We show that this tiny MIWI RG motif is indispensable for piRNA biogenesis and male fertility. The RK mutation in the RG motif disrupts MIWI-TDRKH interaction and impairs enrichment of MIWI to the intermitochondrial cement (IMC) for efficient piRNA production. Despite significant overall piRNA level reduction, piRNA trimming and maturation are not affected by the RK mutation. Consequently, MiwiRK mutant mice show chromatoid body malformation, spermatogenic arrest, and male sterility. Surprisingly, LINE1 transposons are effectively silenced in MiwiRK mutant mice, indicating a LINE1-independent cause of germ cell arrest distinctive from Miwi knockout mice. These findings reveal a crucial function of the RG motif in directing PIWI proteins to engage in efficient piRNA production critical for germ cell progression and highlight the functional importance of the PIWI N-terminal motifs in regulating male fertility.


Assuntos
RNA de Interação com Piwi , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Proteínas/metabolismo , Camundongos Knockout , Arginina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/genética
4.
J Nanobiotechnology ; 22(1): 133, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539195

RESUMO

BACKGROUND: Bone defects in the maxillofacial region restrict the integrity of dental function, posing challenges in clinical treatment. Bone tissue engineering (BTE) with stem cell implants is an effective method. Nanobiomaterials can effectively enhance the resistance of implanted stem cells to the harsh microenvironment of bone defect areas by promoting cell differentiation. Graphene oxide quantum dots (GOQDs) are zero-dimensional nanoscale derivatives of graphene oxide with excellent biological activity. In the present study, we aimed to explore the effects of GOQDs prepared by two methods (Y-GOQDs and B-GOQDs) on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), as well as the effect of gelatin methacryloyl (GelMA)-encapsulated GOQD-induced hPDLSC sheets on the repair of mandibular periodontal defects in rats. We also explored the molecular biological mechanism through which GOQD promotes bone differentiation. RESULTS: There were significant differences in oxygen-containing functional groups, particle size and morphology between Y-GOQDs and B-GOQDs. Y-GOQDs promoted the osteogenic differentiation of hPDLSCs more effectively than did B-GOQDs. In addition, GelMA hydrogel-encapsulated Y-GOQD-induced hPDLSC cell sheet fragments not only exhibited good growth and osteogenic differentiation in vitro but also promoted the repair of mandibular periodontal bone defects in vivo. Furthermore, the greater effectiveness of Y-GOQDs than B-GOQDs in promoting osteogenic differentiation is due to the regulation of hPDLSC mitochondrial dynamics, namely, the promotion of fusion and inhibition of fission. CONCLUSIONS: Overall, Y-GOQDs are more effective than B-GOQDs at promoting the osteogenic differentiation of hPDLSCs by regulating mitochondrial dynamics, which ultimately contributes to bone regeneration via the aid of the GelMA hydrogels in vivo.


Assuntos
Grafite , Osteogênese , Pontos Quânticos , Humanos , Ratos , Animais , Ligamento Periodontal , Dinâmica Mitocondrial , Células-Tronco , Diferenciação Celular , Hidrogéis/farmacologia , Células Cultivadas
5.
Int Endod J ; 57(1): 50-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837219

RESUMO

AIM: This study aimed to investigate the upstream regulators and specific mechanisms of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). METHODOLOGY: Human dental pulp stem cells were isolated and cultured, followed by conducting loss- or gain-of-function experiments on ATF4 and loss experiments on MALAT1 to elucidate their respective biological functions in odontoblastic differentiation. Chromatin immunoprecipitation assays and RNA immunoprecipitation were performed to uncover the interaction between ATF4-MALAT1 and MALAT1-JMJD3, respectively. The odontoblastic differentiation was estimated by the mRNA and protein of DSPP and DMP1, as well as alkaline phosphatase staining. RESULTS: Expression of MALAT1 was upregulated in the hDPSCs cultured in an odontoblastic medium, and MALAT1 downregulation suppressed the odontoblastic differentiation of the hDPSCs. Subsequent experiments confirmed that ATF4 promoted odontoblastic differentiation and induced MALAT1 expression by binding to the MALAT1 promoter region. Further experiments revealed that nuclear MALAT1 interacted with JMJD3. MALAT1 knockdown decreased the JMJD3 protein level and demethylase activity, and it enhanced H3K27me3 occupancy of the promoter region of DSPP and DMP1, resulting in the inhibition of DSPP and DMP1 transcription. Importantly, JMJD3 overexpression significantly attenuated the inhibition of odontoblastic differentiation induced by MALAT1 knockdown. CONCLUSIONS: ATF4-regulated MALAT1 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through JMJD3-mediated H3K27me3 modifications of the DSPP and DMP1 promoters.


Assuntos
Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji , Odontoblastos , RNA Longo não Codificante , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Células Cultivadas , Polpa Dentária , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
6.
J Environ Manage ; 364: 121472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879968

RESUMO

Aquaculture systems are expected to act as potential hotspots for nitrous oxide (N2O) emissions, largely attributed to substantial nutrient loading from aquafeed applications. However, the specific patterns and contributions of N2O fluxes from these systems to the global emissions inventory are not well characterized due to limited data. This study investigates the patterns of N2O flux across 127 freshwater systems in China to elucidate the role of aquaculture ponds and lakes/reservoirs in landscape N2O emission. Our findings show that the average N2O flux from aquaculture ponds was 3.63 times higher (28.73 µg N2O m-2 h-1) than that from non-aquaculture ponds. Additionally, the average N2O flux from aquaculture lakes/reservoirs (15.65 µg N2O m-2 h-1) increased 3.05 times compared to non-aquaculture lakes/reservoirs. The transition from non-aquaculture to aquaculture practices has resulted in a net annual increase of 7589 ± 2409 Mg N2O emissions in China's freshwater systems from 2003 to 2022, equivalent to 20% of total N2O emissions from China's inland water. Particularly, the robust negative regression relationship between N2O emission intensity and water area suggests that small ponds are hotspots of N2O emissions, a result of both elevated nutrient concentrations and more vigorous biogeochemical cycles. This indicates that N2O emissions from smaller aquaculture ponds are larger per unit area compared to equivalent larger water bodies. Our findings highlight that N2O emissions from aquaculture systems can not be proxied by those from natural water bodies, especially small water bodies exhibiting significant but largely unquantified N2O emissions. In the context of the rapid global expansion of aquaculture, this underscores the critical need to integrate aquaculture into global assessments of inland water N2O emissions to advance towards a low-carbon future.


Assuntos
Aquicultura , Óxido Nitroso , Óxido Nitroso/análise , China , Lagos , Monitoramento Ambiental
7.
J Environ Manage ; 365: 121681, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963966

RESUMO

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.

8.
J Environ Manage ; 365: 121649, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955049

RESUMO

In recent years, China has adopted numerous policies and regulations to control NOx emissions to further alleviate the adverse impacts of NO3--N deposition. However, the variation in wet NO3--N deposition under such policies is not clear. In this study, the southeastern area, with highly developed industries and traditional agriculture, was selected to explore the variation in NO3--N deposition and its sources changes after such air pollution control through field observation and isotope tracing. Results showed that the annual mean concentrations of NO3--N in precipitation were 0.67 mg L-1 and 0.54 mg L-1 in 2014-2015 and 2021-2022, respectively. The average wet NO3--N depositions in 2014-2015 and 2021-2022 was 7.76 kg N ha-1 yr-1 and 5.03 kg N ha-1 yr-1, respectively, indicating a 35% decrease. The δ15N-NO3- and δ18O-NO3- values were lower in warm seasons and higher in cold seasons, and both showed a lower trend in 2021-2022 compared with 2014-2015. The Bayesian model results showed that the NOx emitted from coal-powered plants contributed 53.6% to wet NO3--N deposition, followed by vehicle exhaust (22.9%), other sources (17.1%), and soil emissions (6.4%) during 2014-2015. However, the contribution of vehicle exhaust (33.3%) overpassed the coal combustion (32.3%) and followed by other sources (25.4%) and soil emissions (9.0%) in 2021-2022. Apart from the control of air pollution, meteorological factors such as temperature, precipitation, and solar radiation are closely related to the changes in atmospheric N transformation and deposition. The results suggest phased achievements in air pollution control and that more attention should be paid to the control of motor vehicle exhaust pollution in the future, at the same time maintaining current actions and supervision of coal-powered plants.

9.
Glob Chang Biol ; 29(10): 2776-2789, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752684

RESUMO

Resumption of the increase in atmospheric methane (CH4 ) concentrations since 2007 is of global concern and may partly have resulted from emissions from rice cultivation. Estimates of CH4 emissions from rice fields and abatement potential are essential to assess the contribution of improved rice management in achieving the targets of the Global Methane Pledge agreed upon by over 100 countries at COP26. However, the contribution of CH4 emissions from rice fields to the resumed CH4 growth and the global abatement potential remains unclear. In this study, we estimated the global CH4 emissions from rice fields to be 27 ± 6 Tg CH4 year-1 in the recent decade (2008-2017) based on the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The trend of CH4 emissions from rice cultivation showed an increase followed by no significant change and then, a stabilization over 1990-2020. Consequently, the contribution of CH4 emissions from rice fields to the renewed increase in atmospheric CH4 concentrations since 2007 was minor. We summarized the existing low-cost measures and showed that improved water and straw management could reduce one-third of global CH4 emissions from rice fields. Straw returned as biochar could reduce CH4 emissions by 12 Tg CH4 year-1 , equivalent to 10% of the total reduction of all anthropogenic emissions. We conclude that other sectors than rice cultivation must have contributed to the renewed increase in atmospheric CH4 concentrations, and that optimizing multiple mitigation measures in rice fields could contribute significantly to the abatement goal outlined in the Global Methane Pledge.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura/métodos , Solo , Metano/análise
10.
Oral Dis ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37448325

RESUMO

OBJECTIVE: We aimed to identify the crucial genes involved in dental pulp stem cell (DPSC) senescence and evaluate the impact of melatonin on DPSC senescence. METHODS: Western blotting, SA-ß-Gal staining and ALP staining were used to evaluate the senescence and differentiation potential of DPSCs. The optimal concentration of melatonin was determined using the CCK-8 assay. Differentially expressed genes (DEGs) involved in DPSC senescence were obtained via bioinformatics analysis, followed by RT-qPCR. Gain- and loss-of-function studies were conducted to explore the role of MMP3 in DPSC in vitro expansion and in response to melatonin. GSEA was employed to analyse MMP3-related pathways in cellular senescence. RESULTS: Treatment with 0.1 µM melatonin attenuated cellular senescence and differentiation potential suppression in DPSCs due to long-term in vitro expansion. MMP3 was a crucial gene in senescence, as confirmed by bioinformatics analysis, RT-qPCR and Western blotting. Furthermore, gain- and loss-of-function studies revealed that MMP3 played a regulatory role in cellular senescence. Rescue assays showed that overexpression of MMP3 reversed the effect of melatonin on senescence. GSEA revealed that the MMP3-dependent anti-senescence effect of melatonin was associated with the IL6-JAK-STAT3, TNF-α-Signalling-VIA-NF-κB, COMPLEMENT, NOTCH Signalling and PI3K-AKT-mTOR pathways. CONCLUSION: Melatonin attenuated DPSC senescence caused by long-term expansion by inhibiting MMP3.

11.
Environ Res ; 215(Pt 2): 114279, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126691

RESUMO

Information about effects of conversion from rice fields to vegetable fields on denitrification process is still limited. In this study, denitrification rate and product ratio (i.e., N2O/(N2O + N2) ratio) were investigated by soil-core incubation based N2/Ar technique in one rice paddy field (RP) and two vegetable fields (VF4 and VF7, 4 and 7 years vegetable cultivating after conversion from rice fields, respectively). Genes related to denitrification and bacterial community composition were quantified to investigate the microbial mechanisms behind the effects of land-use conversion. The results showed that conversion of rice fields to vegetable fields did not significantly change denitrification rate although the abundance of denitrification related genes was significantly reduced by 79.22%-99.84% in the vegetable soils. Whereas, compared with the RP soil, N2O emission rate was significantly (P < 0.05) increased by 53.5 and 1.6 times in the VF4 and VF7 soils, respectively. Correspondingly, the N2O/(N2O + N2) ratio increased from 0.18% (RP soil) to 5.65% and 0.65% in the VF4 and VF7 soils, respectively. These changes were mainly attributed to the lower pH, higher nitrate content, and the altered bacterial community composition in the vegetable soils. Overall, our results showed that conversion of rice fields to vegetable fields increased the N2O emission rate and altered the product ratio of denitrification. This may increase the contribution of land-use conversion to global warming and stratospheric ozone depletion.


Assuntos
Oryza , Desnitrificação , Nitratos , Óxido Nitroso , Solo/química , Microbiologia do Solo , Ozônio Estratosférico , Verduras
12.
Nanotechnology ; 32(22)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33636718

RESUMO

Heterojunction integrated by two-dimensional/three-dimensional materials has shown great potential applications in optoelectronic devices because of its fast response speed, high specific detectivity and broad spectral response. In this work, the vertical n-Si/p-GaTe heterojunction has been designed and fabricated, which shows a high responsivity up to 5.73 A W-1and a fast response time of 20µs at zero bias benifitting from the high efficiency of light absorption, internal photocurrent gain and strong built-in electrical field. A specific detectivity of 1012Jones and a broad spectral response ranging from 300 to 1100 nm can also be achieved. This work provides an alternative strategy for high-performance self-powered optoelectronic devices.

13.
Glob Chang Biol ; 26(4): 2292-2303, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31833173

RESUMO

Gaseous nitrogen (N) emissions, especially emissions of dinitrogen (N2 ) and ammonia (NH3 ), have long been considered as the major pathways of N loss from flooded rice paddies. However, no studies have simultaneously evaluated the overall response of gaseous N losses to improved N fertilization practices due to the difficulties to directly measure N2 emissions from paddy soils. We simultaneously quantified emissions of N2 (using membrane inlet mass spectrometry), NH3 and nitrous oxide (N2 O) from a flooded paddy field in southern China over an entire rice-growing season. Our field experiment included three treatments: a control treatment (no N addition) and two N fertilizer (220 kg N/ha) application methods, the traditional surface application of N fertilizer and the incorporation of N fertilizer into the soil. Our results show that over the rice-growing season, the cumulative gaseous N losses from the surface application treatment accounted for 13.5% (N2 ), 19.1% (NH3 ), 0.2% (N2 O) and 32.8% (total gaseous N loss) of the applied N fertilizer. Compared with the surface application treatment, the incorporation of N fertilizer into the soil decreased the emissions of NH3 , N2 and N2 O by 14.2%, 13.3% and 42.5%, respectively. Overall, the incorporation of N fertilizer into the soil significantly reduced the total gaseous N loss by 13.8%, improved the fertilizer N use efficiency by 14.4%, increased the rice yield by 13.9% and reduced the gaseous N loss intensity (gaseous N loss/rice yield) by 24.3%. Our results indicate that the incorporation of N fertilizer into the soil is an effective agricultural management practice in ensuring food security and environmental sustainability in flooded paddy ecosystems.

14.
Nanotechnology ; 31(31): 315605, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32320960

RESUMO

Black phosphorus has many potential applications in optoelectronic devices because of its unique properties. Adjusting its performance by doping is an important issue of research. In this paper, we synthesized high-quality Te-doped crystals by the chemical vapor transport method. Tellurium doping with an atomic ratio of 0.1% was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, and energy dispersive X-ray analysis. The performance of field effect transistors devices shows that the hole mobility of Te-doped black phosphorous (BP) is significantly improved compared with that of undoped-BP. The highest hole mobility at room temperature is 719 cm2 V-1 s-1, and the electron mobility is 63 cm2 V-1 s-1. Te-doped BP field effect transistors show an obvious bipolar behavior.

15.
Nanotechnology ; 31(11): 115209, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31747641

RESUMO

Resistive random access memory (RRAM) is considered to be one of the important candidates for the next generation of memory devices. Zinc oxide resistive memory has also been studied for many years, but there are still some controversial topics and problems. Herein, an unusual resistance state has been observed in devices following the measurement and analysis of ZnO resistive memories with different thicknesses, a middle resistance state was speculated to explain the instability of ZnO RRAM. According to this speculation, a two-layer structure ZnO RRAM has been designed to significantly increase the device performance with the introduction of an HfO2 layer and the enhancement has also been explained based on the results of first-principles calculations.

16.
Nature ; 514(7523): 486-9, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25186728

RESUMO

Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha(-1)), 7.2 Mg ha(-1) and 10.5 Mg ha(-1) to 8.5 Mg ha(-1), 8.9 Mg ha(-1) and 14.2 Mg ha(-1), respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil-crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/provisão & distribuição , Meio Ambiente , Ração Animal , China , Fertilizantes/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Nitrogênio/metabolismo
17.
Nanotechnology ; 30(34): 345208, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31067522

RESUMO

Enhanced on/off ratio, obvious threshold voltage left shift, newly emerging bipolar field effect performance and most importantly, excellent stability in ambient condition have been reported for the HfO2-passivated black phosphorus field effect transistors . Both Raman spectra and x-ray photoelectron spectroscopy (XPS) show a thickness reduction effect after HfO2 passivation, XPS further demonstrates that the formation of P-Hf and P-O chemical bonds contributes to the thinning of layered black phosphorus (BP), in which P-Hf bonds also provide chemical protection for BP flakes from degradation. Atomic force microscopy measures the thickness of the passivation layer and also verifies the stability of the passivated BP flakes.

18.
Environ Sci Technol ; 53(3): 1109-1118, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620872

RESUMO

Managing reactive nitrogen (Nr) to achieve a sustainable balance between production of food, feed and fiber, and environmental protection is a grand challenge in the context of an increasingly affluent society. Here, we propose a novel framework for national nitrogen (N) assessments enabling a more consistent comparison of the uses, losses and impacts of Nr between countries, and improvement of Nr management for sustainable development at national and regional scales. This framework includes four key components: national scale N budgets, validation of N fluxes, cost-benefit analysis and Nr management strategies. We identify four critical factors for Nr management to achieve the sustainable development goals: N use efficiency (NUE), Nr recycling ratio (e.g., ratio of livestock excretion applied to cropland), human dietary patterns and food waste ratio. This framework was partly adopted from the European Nitrogen Assessment and now is successfully applied to China, where it contributed to trigger policy interventions toward improvements for future sustainable use of Nr. We demonstrate how other countries can also benefit from the application our framework, in order to include sustainable Nr management under future challenges of growing population, hence contributing to the achievement of some key sustainable development goals (SDGs).


Assuntos
Conservação dos Recursos Naturais , Nitrogênio , Animais , China , Alimentos , Humanos , Gado
19.
Opt Lett ; 43(10): 2422-2425, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762608

RESUMO

A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20 nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10 nm) with a CMP of only ∼100 mW. In both cases, the CMP is much lower as compared to the required CMP (∼280 mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.

20.
Environ Monit Assess ; 190(6): 341, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748785

RESUMO

Soil, water, and air NO3- pollution is a major environmental problem worldwide. Stable isotope analysis can assess the origin of NOx because different NOx sources carry different isotope signatures. Hence, using appropriate chemical methods to determine the δ15N-NOx values in different samples is important to improve our understanding of the N-NOx pollution and take possible strategies to manage it. Two modified chemical methods, the cadmium-sodium azide method and the VCl3-sodium azide method, were used to establish a comprehensive inventory of δ15N-NOx values associated with major NOx fluxes by the conversion of NO3- into N2O. Precision and limit of detection values demonstrated the robustness of these quantitative techniques for measuring δ15N-NOx. The standard deviations of the δ15N-NO3- values were 0.35 and 0.34‰ for the cadmium-sodium azide and VCl3-sodium azide methods. The mean δ15N-NO3- values of river water, soil extracts, and summer rain were 8.9 ± 3.3, 3.5 ± 3.5, and 3.3 ± 2.1‰, respectively. The δ15N-NO3- values of low concentration samples collected from coal-fired power plants, motor vehicles, and gaseous HNO3 was 20.3 ± 4.3, 5.6 ± 2.78, and 5.7 ± 3.6‰, respectively. There was a good correlation between the δ15N-NO3- compositions of standards and samples, which demonstrates that these chemical reactions can be used successfully to assess δ15N-NO3- values in the environment.


Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Radioisótopos de Nitrogênio/análise , Chuva/química , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Cádmio/química , Centrais Elétricas , Estações do Ano , Azida Sódica/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA