Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.103
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 83(9): 1502-1518.e10, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086726

RESUMO

2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA , Imunidade Inata
2.
Cell ; 158(3): 607-19, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083871

RESUMO

MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo , Biossíntese de Proteínas , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular , Camundongos , Mioblastos/citologia , Miócitos Cardíacos/citologia
3.
Nature ; 622(7983): 499-506, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704732

RESUMO

Solar steam interfacial evaporation represents a promising strategy for seawater desalination and wastewater purification owing to its environmentally friendly character1-3. To improve the solar-to-steam generation, most previous efforts have focused on effectively harvesting solar energy over the full solar spectrum4-7. However, the importance of tuning joint densities of states in enhancing solar absorption of photothermal materials is less emphasized. Here we propose a route to greatly elevate joint densities of states by introducing a flat-band electronic structure. Our study reveals that metallic λ-Ti3O5 powders show a high solar absorptivity of 96.4% due to Ti-Ti dimer-induced flat bands around the Fermi level. By incorporating them into three-dimensional porous hydrogel-based evaporators with a conical cavity, an unprecedentedly high evaporation rate of roughly 6.09 kilograms per square metre per hour is achieved for 3.5 weight percent saline water under 1 sun of irradiation without salt precipitation. Fundamentally, the Ti-Ti dimers and U-shaped groove structure exposed on the λ-Ti3O5 surface facilitate the dissociation of adsorbed water molecules and benefit the interfacial water evaporation in the form of small clusters. The present work highlights the crucial roles of Ti-Ti dimer-induced flat bands in enchaining solar absorption and peculiar U-shaped grooves in promoting water dissociation, offering insights into access to cost-effective solar-to-steam generation.

4.
Proc Natl Acad Sci U S A ; 121(22): e2317205121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776369

RESUMO

Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.

5.
Genome Res ; 33(5): 750-762, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37308294

RESUMO

For most biological and medical applications of single-cell transcriptomics, an integrative study of multiple heterogeneous single-cell RNA sequencing (scRNA-seq) data sets is crucial. However, present approaches are unable to integrate diverse data sets from various biological conditions effectively because of the confounding effects of biological and technical differences. We introduce single-cell integration (scInt), an integration method based on accurate, robust cell-cell similarity construction and unified contrastive biological variation learning from multiple scRNA-seq data sets. scInt provides a flexible and effective approach to transfer knowledge from the already integrated reference to the query. We show that scInt outperforms 10 other cutting-edge approaches using both simulated and real data sets, particularly in the case of complex experimental designs. Application of scInt to mouse developing tracheal epithelial data shows its ability to integrate development trajectories from different developmental stages. Furthermore, scInt successfully identifies functionally distinct condition-specific cell subpopulations in single-cell heterogeneous samples from a variety of biological conditions.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento do Exoma , Análise de Sequência de RNA/métodos
6.
Nature ; 580(7801): 93-99, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238934

RESUMO

Prostate cancer is the second most common cancer in men worldwide1. Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients2,3. However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.


Assuntos
Povo Asiático/genética , Epigênese Genética , Epigenômica , Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , China , Estudos de Coortes , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/patologia , RNA-Seq , Transcriptoma/genética
7.
Plant J ; 118(5): 1652-1667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418388

RESUMO

Potassium (K+), being an essential macronutrient in plants, plays a central role in many aspects. Root growth is highly plastic and is affected by many different abiotic stresses including nutrient deficiency. The Shaker-type K+ channel Arabidopsis (Arabidopsis thaliana) K+ Transporter 1 (AKT1) is responsible for K+ uptake under both low and high external K+ conditions. However, the upstream transcription factor of AKT1 is not clear. Here, we demonstrated that the WRKY6 transcription factor modulates root growth to low potassium (LK) stress in Arabidopsis. WRKY6 showed a quick response to LK stress and also to many other abiotic stress treatments. The two wrky6 T-DNA insertion mutants were highly sensitive to LK treatment, whose primary root lengths were much shorter, less biomass and lower K+ content in roots than those of wild-type plants, while WRKY6-overexpression lines showed opposite phenotypes. A further investigation showed that WRKY6 regulated the expression of the AKT1 gene via directly binding to the W-box elements in its promoter through EMSA and ChIP-qPCR assays. A dual luciferase reporter analysis further demonstrated that WRKY6 enhanced the transcription of AKT1. Genetic analysis further revealed that the overexpression of AKT1 greatly rescued the short root phenotype of the wrky6 mutant under LK stress, suggesting AKT1 is epistatic to WRKY6 in the control of LK response. Further transcriptome profiling suggested that WRKY6 modulates LK response through a complex regulatory network. Thus, this study unveils a transcription factor that modulates root growth under potassium deficiency conditions by affecting the potassium channel gene AKT1 expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Potássio , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potássio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Canais de Potássio
8.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617209

RESUMO

Recent studies have shown that the expression of circRNAs would affect drug sensitivity of cells and thus significantly influence the efficacy of drugs. Traditional biomedical experiments to validate such relationships are time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between circRNAs and drug sensitivity is an important and urgent task. In this study, we propose a novel method, called MNGACDA, to predict possible circRNA-drug sensitivity associations for further biomedical screening. First, MNGACDA uses multiple sources of information from circRNAs and drugs to construct multimodal networks. It then employs node-level attention graph auto-encoders to obtain low-dimensional embeddings for circRNAs and drugs from the multimodal networks. Finally, an inner product decoder is applied to predict the association scores between circRNAs and drug sensitivity based on the embedding representations of circRNAs and drugs. Extensive experimental results based on cross-validations show that MNGACDA outperforms six other state-of-the-art methods. Furthermore, excellent performance in case studies demonstrates that MNGACDA is an effective tool for predicting circRNA-drug sensitivity associations in real situations. These results confirm the reliable prediction ability of MNGACDA in revealing circRNA-drug sensitivity associations.


Assuntos
RNA Circular , RNA Circular/genética
9.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753521

RESUMO

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiologia , Interleucina-6/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Células-Tronco , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
10.
PLoS Pathog ; 19(5): e1011304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146061

RESUMO

Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.


Assuntos
Infecções por Citomegalovirus , Glioblastoma , Receptor EphA2 , Humanos , Proteínas do Envelope Viral/metabolismo , Glioblastoma/genética , Citomegalovirus/fisiologia , Receptor EphA2/genética
11.
Am J Pathol ; 194(6): 1078-1089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417697

RESUMO

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Assuntos
Retinopatia Diabética , Ferroptose , Espécies Reativas de Oxigênio , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Animais , Humanos , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Microvasos/patologia , Microvasos/metabolismo , Ferro/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
12.
Plant Physiol ; 195(1): 356-369, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227494

RESUMO

Actin dynamics are critical for plant cell morphogenesis, but the underlying signaling mechanisms regulating these dynamics are not well understood. Here, we established that PLEIOTROPIC REGULATORY LOCUS1 (PRL1) modulates leaf pavement cell (PC) morphogenesis in Arabidopsis (Arabidopsis thaliana) by maintaining the dynamic homeostasis of actin microfilaments (MF). Our previous studies indicated that PC shape was determined by antagonistic RHO-RELATED GTPase FROM PLANTS 2 (ROP2) and RHO-RELATED GTPase FROM PLANTS 6 (ROP6) signaling pathways that promote cortical MF and microtubule organization, respectively. Our genetic screen for additional components in ROP6-mediated signaling identified prl1 alleles. Genetic analysis confirmed that PRL1 plays a key role in PC morphogenesis. Mutations in PRL1 caused cortical MF depolymerization, resulting in defective PC morphogenesis. Further genetic analysis revealed that PRL1 is epistatic to ROP2 and ROP6 in PC morphogenesis. Mutations in PRL1 enhanced the effects of ROP2 and ROP6 in PC morphogenesis, leading to a synergistic phenotype in the PCs of ROP2 prl1 and ROP6 prl1. Furthermore, the activities of ROP2 and ROP6 were differentially altered in prl1 mutants, suggesting that ROP2 and ROP6 function downstream of PRL1. Additionally, cortical MF depolymerization in prl1 mutants occurred independently of ROP2 and ROP6, implying that these proteins impact PC morphogenesis in the prl1 mutant through other cellular processes. Our research indicates that PRL1 preserves the structural integrity of actin and facilitates pavement cell morphogenesis in Arabidopsis.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP , Morfogênese , Mutação , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogênese/genética , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais
13.
Blood ; 142(4): 365-381, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37216691

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of patients who receive the most intensive treatment inevitably experience disease relapse, likely resulting from the persistence of drug-resistant leukemia stem cells (LSCs). AML cells, especially LSCs, are highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) for survival, but the mechanism involved in OXPHOS hyperactivity is unclear, and a noncytotoxic strategy to inhibit OXPHOS is lacking. To our knowledge, this study is the first to demonstrate that ZDHHC21 palmitoyltransferase serves as a key regulator of OXPHOS hyperactivity in AML cells. The depletion/inhibition of ZDHHC21 effectively induced myeloid differentiation and weakened stemness potential by inhibiting OXPHOS in AML cells. Interestingly, FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD)-mutated AML cells expressed significantly higher levels of ZDHHC21 and exhibited better sensitivity to ZDHHC21 inhibition. Mechanistically, ZDHHC21 specifically catalyzed the palmitoylation of mitochondrial adenylate kinase 2 (AK2) and further activated OXPHOS in leukemic blasts. Inhibition of ZDHHC21 arrested the in vivo growth of AML cells and extended the survival of mice inoculated with AML cell lines and patient derived xenograft AML blasts. Moreover, targeting ZDHHC21 to suppress OXPHOS markedly eradicated AML blasts and enhanced chemotherapy efficacy in relapsed/refractory leukemia. Together, these findings not only uncover a new biological function of palmitoyltransferase ZDHHC21 in regulating AML OXPHOS but also indicate that ZDHHC21 inhibition is a promising therapeutic regimen for patients with AML, especially relapsed/refractory leukemia.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Animais , Humanos , Camundongos , Diferenciação Celular , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
14.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
15.
EMBO Rep ; 24(12): e57528, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37955227

RESUMO

Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.


Assuntos
Herpesvirus Humano 1 , Animais , Camundongos , DNA , Herpesvirus Humano 1/genética , Imunidade Inata , Ubiquitinação
16.
Mol Cell Proteomics ; 22(9): 100613, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394064

RESUMO

Prostate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC). We collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. We quantified 7355 proteins using these HSPC biopsies. A total of 251 proteins showed differential expression between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified seven proteins that significantly discriminated long- from short-term progression patients, which were used to classify PCa patients with an area under the curve of 0.873. Next, one clinical feature (Gleason sum) and two proteins (BGN and MAPK11) were found to be significantly associated with rapid disease progression. A nomogram model using these three features was generated for stratifying patients into groups with significant progression differences (p-value = 1.3×10-4). To conclude, we identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predicted their prognoses. These models may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Estudos Retrospectivos , Antígeno Prostático Específico , Hormônios
17.
Nucleic Acids Res ; 51(D1): D1367-D1372, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300631

RESUMO

Proteolysis targeting chimeras (PROTACs), which harness the ubiquitin-proteasome system to selectively induce targeted protein degradation, represent an emerging therapeutic technology with the potential to modulate traditional undruggable targets. Over the past few years, this technology has moved from academia to industry and more than 10 PROTACs have been advanced into clinical trials. However, designing potent PROTACs with desirable drug-like properties still remains a great challenge. Here, we report an updated online database, PROTAC-DB 2.0, which is a repository of structural and experimental data about PROTACs. In this 2nd release, we expanded the number of PROTACs to 3270, which corresponds to a 96% expansion over the first version. Meanwhile, the numbers of warheads (small molecules targeting the proteins of interest), linkers, and E3 ligands (small molecules recruiting E3 ligases) have increased to over 360, 1500 and 80, respectively. In addition, given the importance and the limited number of the crystal target-PROTAC-E3 ternary complex structures, we provide the predicted ternary complex structures for PROTACs with good degradation capability using our PROTAC-Model method. To further facilitate the analysis of PROTAC data, a new filtering strategy based on the E3 ligases is also added. PROTAC-DB 2.0 is available online at http://cadd.zju.edu.cn/protacdb/.


Assuntos
Bases de Dados de Proteínas , Complexo de Endopeptidases do Proteassoma , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(11): e2119415119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259018

RESUMO

SignificanceHosts often target the relatively conserved regions in rapidly mutating retroviruses to inhibit their replication. One of these regions is called a primer binding site (PBS), which has to be complementary to the host tRNA to initiate reverse transcription. By analyzing endogenous retroviral elements, we found that host cells use this sequence as a target in efforts to block the expression of viral elements. A specific type of zinc finger protein targets the PBS in a host genome, which not only inhibits the transcription of endogenous viruses but also inhibits the replication of exogenous retroviruses with the same PBS. Thus, our study sheds light on a strategy for searching for host restriction factors targeting retroviruses.


Assuntos
Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Repressoras/metabolismo , Retroviridae/fisiologia , Dedos de Zinco , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Retrovirus Endógenos , Estudo de Associação Genômica Ampla , Humanos , Motivos de Nucleotídeos , Retroviridae/classificação , Transcrição Gênica , Replicação Viral
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35022217

RESUMO

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Endossomos/metabolismo , SARS-CoV-2 , Nexinas de Classificação/química , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cristalografia por Raios X , Citosol/metabolismo , Endocitose , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Homeostase , Humanos , Lentivirus , Lisossomos/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Nexinas de Classificação/metabolismo , Internalização do Vírus
20.
BMC Bioinformatics ; 25(1): 157, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643108

RESUMO

BACKGROUND: The identification of essential proteins can help in understanding the minimum requirements for cell survival and development to discover drug targets and prevent disease. Nowadays, node ranking methods are a common way to identify essential proteins, but the poor data quality of the underlying PIN has somewhat hindered the identification accuracy of essential proteins for these methods in the PIN. Therefore, researchers constructed refinement networks by considering certain biological properties of interacting protein pairs to improve the performance of node ranking methods in the PIN. Studies show that proteins in a complex are more likely to be essential than proteins not present in the complex. However, the modularity is usually ignored for the refinement methods of the PINs. METHODS: Based on this, we proposed a network refinement method based on module discovery and biological information. The idea is, first, to extract the maximal connected subgraph in the PIN, and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules according to the orthologous information, subcellular localization information and topology information within each module; finally, to construct a more refined network (CM-PIN) by using the identified critical modules. RESULTS: To evaluate the effectiveness of the proposed method, we used 12 typical node ranking methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) to compare the overall performance of the CM-PIN with those on the S-PIN, D-PIN and RD-PIN. The experimental results showed that the CM-PIN was optimal in terms of the identification number of essential proteins, precision-recall curve, Jackknifing method and other criteria, and can help to identify essential proteins more accurately.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Mapas de Interação de Proteínas , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA