Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402051, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733227

RESUMO

Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water-splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin-film photoanode for PEC water-splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser-induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO3) nanorods (NRs). To facilitate water-splitting, a femtosecond-pulsed laser (fs laser) is focused on the WO3 NRs, converting their crystalline phase from pristine orthorhombic to monoclinic structure without thermal damage. With NiFe layered double hydroxide (LDH) catalyst, the flexible thin-film photoanode exhibits good PEC performance (1.46 mA cm-2 at 1.23 VRHE) and retains ≈90% of its performance after 3000 bending cycles. With its excellent mechanical properties, the flexible photoanode can be operated in various shapes with different curvatures, enabling space-efficient PEC water-splitting by loading larger photoanode within a given space. This study is expected to contribute to the advancement of large-scale solar water-splitting cells, introducing a new approach to enhance H2/O2 production and expand its application range.

2.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161953

RESUMO

The refractive index (RI), an important optical property of a material, is measured by commercial refractometers in the food, agricultural, chemical, and manufacturing industries. Most of these refractometers must be equipped with a prism for light dispersion, which drastically limits the design and size of the refractometer. Recently, there have been several reports on the development of a surface plasmon resonance (SPR)-based RI detector, which is characterized by its high sensitivity and simplicity. However, regardless of the prism, an expensive spectrometer is required to analyze the resonance wavelength or angle of incidence. This paper proposes a method that eliminates the need for the prism and other conventional spectrometer components. For this purpose, total internal reflection SPR technology was used on an Ag thin film, and RI analysis was combined with a lens-free CMOS image sensor or a smartphone camera. A finite-difference time-domain (FDTD) numerical simulation was performed to evaluate the relationship between the output power intensity and Ag film thickness for different RIs at three wavelengths of commercial light-emitting diodes (LEDs). The maximum sensitivity of -824.54 RIU-1 was achieved with AG20 at an incident wavelength of 559 nm. Due to its simple design and cost effectiveness, this prism-less, SPR-based refractometer combined with a lens-free CMOS image sensor or a smartphone could be a superior candidate for a point-of-care device that can determine the RIs of various analytes in the field of biological or chemical sensing.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Análise Espectral
3.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924628

RESUMO

Field-portable observation and analysis of particulate matter (PM) is required to enhance healthy lives. Various types of the PM measurement methods are in use; however, each of these methods has significant limitations in that real time measurement is impossible, the detection system is bulky, or the measurement accuracy is insufficient. In this work, we introduce an optical method to perform a fast and accurate PM analysis with a higher-contrast microscopic image enabled by a side-illuminated total internal reflection (TIR) technique to be implemented in a compact device. The superiority of the proposed method was quantitatively demonstrated by comparing the signal-to-noise ratio of the proposed side-illuminated TIR method with a traditional halogen lamp-based transmission microscope. With the proposed device, signal-to-noise ratios (SNRs) for microbeads (5~20 µm) and ultrafine dust particles (>5 µm) increased 4.5~17 and 4~10 dB, respectively, compared to the conventional transmission microscope. As a proof of concept, the proposed method was also applied to a low-cost commercial smartphone toy microscope enabling field-portable detection of PMs. We believe that the proposed side-illuminated TIR PM detection device holds significant advantages over other commonly used systems due to its sufficient detection capability along with simple and compact configuration as well as low cost.


Assuntos
Microscopia , Material Particulado , Smartphone
4.
Nanotechnology ; 28(22): 225702, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28488592

RESUMO

We investigate the interface trap behavior between tunneling oxide and poly-Si channel layer post erase/write cycling with a delayed pulse by using deep level transient spectroscopy. For comparison of the defect states depending on the stress pulses, a Schottky and a metal-oxide semiconductor device were fabricated. A defect state at about E c -0.51 eV in the Schottky device was measured before the annealing process. Three-hole trap states with activation energies of E v +0.28 eV, E v +0.53 eV, and E v +0.76 eV appeared after the post-annealing process. The electron trap was about E c -0.15 eV after erase/write 3000 cycling was applied at ±10 V for 100 ms at 25 °C and 85 °C. These defect states may have an effect on the charge loss behavior of the electrons localized in the charge trap layer at the retention mode of three-dimensional non-volatile memory devices. Dramatically, after the endurance stress was applied with a delayed pulse of 300 cycling at 85 °C for 50.4 h, no interface traps of the deep level transient spectroscopy spectra appeared. Dielectric recovery can decrease the density of the interface trap and improve the retention properties. This may have been caused by the passivation effect on the dangling bond of the interface traps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA