Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Am J Respir Crit Care Med ; 207(5): 587-593, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094461

RESUMO

Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Estudos de Coortes , Incidência , Dispneia , Pulmão , Estudos Retrospectivos
2.
Am J Respir Cell Mol Biol ; 68(1): 62-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108173

RESUMO

The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.


Assuntos
Fibrose Pulmonar Idiopática , Mucina-5B , Camundongos , Animais , Mucina-5B/genética , Mucina-5B/metabolismo , Fator de Iniciação 2B em Eucariotos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Estresse do Retículo Endoplasmático , Bleomicina
3.
Physiol Rev ; 96(4): 1567-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27630174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an incurable complex genetic disorder that is associated with sequence changes in 7 genes (MUC5B, TERT, TERC, RTEL1, PARN, SFTPC, and SFTPA2) and with variants in at least 11 novel loci. We have previously found that 1) a common gain-of-function promoter variant in MUC5B rs35705950 is the strongest risk factor (genetic and otherwise), accounting for 30-35% of the risk of developing IPF, a disease that was previously considered idiopathic; 2) the MUC5B promoter variant can potentially be used to identify individuals with preclinical pulmonary fibrosis and is predictive of radiologic progression of preclinical pulmonary fibrosis; and 3) MUC5B may be involved in the pathogenesis of pulmonary fibrosis with MUC5B message and protein expressed in bronchiolo-alveolar epithelia of IPF and the characteristic IPF honeycomb cysts. Based on these considerations, we hypothesize that excessive production of MUC5B either enhances injury due to reduced mucociliary clearance or impedes repair consequent to disruption of normal regenerative mechanisms in the distal lung. In aggregate, these novel considerations should have broad impact, resulting in specific etiologic targets, early detection of disease, and novel biologic pathways for use in the design of future intervention, prevention, and mechanistic studies of IPF.


Assuntos
Bronquíolos/fisiopatologia , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Depuração Mucociliar/genética , Alvéolos Pulmonares/fisiopatologia , Animais , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Mucosa Respiratória/fisiopatologia
4.
Thorax ; 78(6): 551-558, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35534152

RESUMO

BACKGROUND: Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS: We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS: We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION: We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Transcriptoma , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Perfilação da Expressão Gênica , Análise por Conglomerados , Biomarcadores
5.
Respir Res ; 24(1): 287, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978501

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.


Assuntos
Fator de Iniciação 2 em Eucariotos , Fibrose Pulmonar Idiopática , Humanos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Transcriptoma , Fibrose
6.
Pediatr Diabetes ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38765731

RESUMO

Given the differential risk of type 1 diabetes (T1D) in offspring of affected fathers versus affected mothers and our observation that T1D cases have differential DNA methylation near the imprinted DLGAP2 gene compared to controls, we examined whether methylation near DLGAP2 mediates the association between T1D family history and T1D risk. In a nested case-control study of 87 T1D cases and 87 controls from the Diabetes Autoimmunity Study in the Young, we conducted causal mediation analyses at 12 DLGAP2 region CpGs to decompose the effect of family history on T1D risk into indirect and direct effects. These effects were estimated from two regression models adjusted for the human leukocyte antigen DR3/4 genotype: a linear regression of family history on methylation (mediator model) and a logistic regression of family history and methylation on T1D (outcome model). For 8 of the 12 CpGs, we identified a significant interaction between T1D family history and methylation on T1D risk. Accounting for this interaction, we found that the increased risk of T1D for children with affected mothers compared to those with no family history was mediated through differences in methylation at two CpGs (cg27351978, cg00565786) in the DLGAP2 region, as demonstrated by a significant pure natural indirect effect (odds ratio (OR) = 1.98, 95% confidence interval (CI): 1.06-3.71) and nonsignificant total natural direct effect (OR = 1.65, 95% CI: 0.16-16.62) (for cg00565786). In contrast, the increased risk of T1D for children with an affected father or sibling was not explained by DNA methylation changes at these CpGs. Results were similar for cg27351978 and robust in sensitivity analyses. Lastly, we found that DNA methylation in the DLGAP2 region was associated (P<0:05) with gene expression of nearby protein-coding genes DLGAP2, ARHGEF10, ZNF596, and ERICH1. Results indicate that the maternal protective effect conferred through exposure to T1D in utero may operate through changes to DNA methylation that have functional downstream consequences.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Masculino , Estudos de Casos e Controles , Criança , Pré-Escolar , Adolescente , Proteínas Ativadoras de GTPase/genética , Ilhas de CpG , Fatores de Risco , Proteínas do Tecido Nervoso
7.
Environ Res ; 231(Pt 2): 116215, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224946

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, environmentally persistent chemicals, and prenatal exposures have been associated with adverse child health outcomes. Prenatal PFAS exposure may lead to epigenetic age acceleration (EAA), defined as the discrepancy between an individual's chronologic and epigenetic or biological age. OBJECTIVES: We estimated associations of maternal serum PFAS concentrations with EAA in umbilical cord blood DNA methylation using linear regression, and a multivariable exposure-response function of the PFAS mixture using Bayesian kernel machine regression. METHODS: Five PFAS were quantified in maternal serum (median: 27 weeks of gestation) among 577 mother-infant dyads from a prospective cohort. Cord blood DNA methylation data were assessed with the Illumina HumanMethylation450 array. EAA was calculated as the residuals from regressing gestational age on epigenetic age, calculated using a cord-blood specific epigenetic clock. Linear regression tested for associations between each maternal PFAS concentration with EAA. Bayesian kernel machine regression with hierarchical selection estimated an exposure-response function for the PFAS mixture. RESULTS: In single pollutant models we observed an inverse relationship between perfluorodecanoate (PFDA) and EAA (-0.148 weeks per log-unit increase, 95% CI: -0.283, -0.013). Mixture analysis with hierarchical selection between perfluoroalkyl carboxylates and sulfonates indicated the carboxylates had the highest group posterior inclusion probability (PIP), or relative importance. Within this group, PFDA had the highest conditional PIP. Univariate predictor-response functions indicated PFDA and perfluorononanoate were inversely associated with EAA, while perfluorohexane sulfonate had a positive association with EAA. CONCLUSIONS: Maternal mid-pregnancy serum concentrations of PFDA were negatively associated with EAA in cord blood, suggesting a pathway by which prenatal PFAS exposures may affect infant development. No significant associations were observed with other PFAS. Mixture models suggested opposite directions of association between perfluoroalkyl sulfonates and carboxylates. Future studies are needed to determine the importance of neonatal EAA for later child health outcomes.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Lactente , Recém-Nascido , Gravidez , Criança , Feminino , Humanos , Sangue Fetal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Estudos Prospectivos , Teorema de Bayes , Alcanossulfonatos , Mães , Ácidos Carboxílicos , Epigênese Genética
8.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816432

RESUMO

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , DNA , Metilação de DNA/genética , Expressão Gênica , Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Locos de Características Quantitativas/genética , RNA
9.
J Allergy Clin Immunol ; 150(2): 259-265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717251

RESUMO

Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.


Assuntos
Asma , Epigênese Genética , Metilação de DNA , Histonas/metabolismo , Humanos , Imunidade
10.
Am J Respir Cell Mol Biol ; 67(6): 632-640, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35972918

RESUMO

Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.


Assuntos
Beriliose , Humanos , Beriliose/genética , Linfócitos T , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Imunidade Inata/genética , RNA , Doença Crônica
11.
Am J Respir Cell Mol Biol ; 67(2): 188-200, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608953

RESUMO

We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Bleomicina/toxicidade , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Transdução de Sinais
12.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L329-L337, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881171

RESUMO

Previously we have shown that a gain-of-function MUC5B promoter variant (rs35705950) is the strongest risk factor for the development of idiopathic pulmonary fibrosis. We have also found that Muc5b overexpression reduces mucociliary clearance in mice, potentially leading to recurrent injury to the bronchoalveolar epithelia. Hypersensitivity pneumonitis (HP) is induced by inhalation of numerous causative antigens that may be affected by mucociliary clearance. We conducted this study to determine the role of Muc5b in a mouse model of HP induced by Saccharopolyspora rectivirgula (SR) antigen. We used Muc5b-deficient and wild-type (WT) mice to determine whether Muc5b plays a role in inflammation and fibrosis at 3 and 6 wk in an SR model of HP. We measured cell concentrations and MUC5B expression in whole lung lavage (WLL) and quantified fibrosis using hydroxyproline assay and second harmonic generation. Muc5b expression in WLL fluid was significantly increased in SR-exposed WT mice compared with saline controls. WT mice challenged with SR developed more inflammation and lung fibrosis at 6 wk compared with 3 wk postexposure. Moreover, we found that 6 wk following challenge with SR, Muc5b-deficient mice had less lung inflammation and less lung fibrosis than Muc5b WT mice. Furthermore, Muc5b-deficient mice had significantly lower concentrations of TGF-ß1 in the WLL compared with Muc5b WT mice at 6 wk of exposure. Muc5b appears to play a role in fibrosis in the animal model of HP and this may have implications for HP in humans.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Saccharopolyspora , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/genética , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5B/genética
13.
Thorax ; 77(5): 508-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34996848

RESUMO

A subset of patients with hypersensitivity pneumonitis (HP) develop lung fibrosis that is clinically similar to idiopathic pulmonary fibrosis (IPF). To address the aetiological determinants of fibrotic HP, we investigated whether the common IPF genetic risk variants were also relevant in study subjects with fibrotic HP. Our findings indicate that common genetic variants in TERC, DSP, MUC5B and IVD were significantly associated with fibrotic HP. These findings provide support for a shared etiology and pathogenesis between fibrotic HP and IPF.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Alveolite Alérgica Extrínseca/genética , Fibrose , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fatores de Risco
14.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34172473

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease. Few circulating biomarkers have been identified to have causal effects on IPF. METHODS: To identify candidate IPF-influencing circulating proteins, we undertook an efficient screen of circulating proteins by applying a two-sample Mendelian randomisation (MR) approach with existing publicly available data. For instruments, we used genetic determinants of circulating proteins which reside cis to the encoded gene (cis-single nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies (GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation analyses to ensure that both the circulating proteins and IPF shared a common genetic signal. RESULTS: MR analyses of 834 proteins found that a 1 sd increase in circulating galactoside 3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with a reduced risk of IPF (OR 0.81, 95% CI 0.74-0.88; p=6.3×10-7 and OR 0.76, 95% CI 0.68-0.86; p=1.1×10-5, respectively). Sensitivity analyses including multiple cis-SNPs provided similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78-0.91; p=9.8×10-6 and MR-Egger OR 0.69, 95% CI 0.50-0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77-0.92; p=1.4×10-4 and MR-Egger OR 0.59, 95% CI 0.38-0.90; p=0.01). FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations supported the protective effects of FUT3 for IPF. CONCLUSIONS: An efficient MR scan of 834 circulating proteins provided evidence that genetically increased circulating FUT3 level is associated with reduced risk of IPF.


Assuntos
Fucosiltransferases , Fibrose Pulmonar Idiopática , Fucosiltransferases/genética , Estudo de Associação Genômica Ampla , Humanos , Fibrose Pulmonar Idiopática/genética , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único
15.
Environ Res ; 214(Pt 1): 113881, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835166

RESUMO

BACKGROUND: Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS: Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS: We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS: Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Adiposidade , Criança , Estudos de Coortes , Metilação de DNA , Feminino , Sangue Fetal , Humanos , Lactente , Recém-Nascido , Exposição Materna , Obesidade , Material Particulado , Gravidez
16.
Am J Respir Cell Mol Biol ; 65(4): 430-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038697

RESUMO

Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , RNA Longo não Codificante/genética , Transcriptoma/fisiologia , Idoso , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L440-L450, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160296

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an incurable genetic disease that affects 5 million people worldwide. The gain-of-function MUC5B promoter variant rs35705950 is the dominant genetic risk factor for IPF, yet has a low penetrance. This raises the possibility that other genes and transcripts affect the penetrance of MUC5B. Previously, we have shown that the concentration of Muc5b in bronchoalveolar epithelia is directly associated with the extent and persistence of bleomycin-induced lung fibrosis in mice. In this study, we investigated whether bleomycin-induced lung injury is Muc5b dependent in genetically divergent strains of mice. Specifically, mice from the eight Diversity Outbred (DO) founders were phenotyped for Muc5b expression and lung fibrosis 3 wk after intratracheal bleomycin administration. Although we identified strains with low Muc5b expression and minimal lung fibrosis (CAST/EiJ and PWK/PhJ) and strains with high Muc5b expression and extensive lung fibrosis (NZO/H1LtJ and WSB/EiJ), there also were strains that did not demonstrate a clear relationship between Muc5b expression and lung fibrosis (129S1/SvlmJ, NOD/ShiLtJ, and C57BL/6J, A/J). Hierarchical clustering suggests that other factors may work in concert with or potentially independent of Muc5b to promote bleomycin-induced lung injury and fibrosis. This study suggests that these strains and their recombinant inbred crosses may prove helpful in identifying the genes and transcripts that interact with Muc5b and cause lung fibrosis.


Assuntos
Bleomicina/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Fibrose Pulmonar Idiopática , Mucina-5B , Mucosa Respiratória , Animais , Bleomicina/farmacologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Mucina-5B/biossíntese , Mucina-5B/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
18.
Am J Hum Genet ; 103(5): 679-690, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401457

RESUMO

Non-secretor status due to homozygosity for the common FUT2 variant c.461G>A (p.Trp154∗) is associated with either risk for autoimmune diseases or protection against viral diarrhea and HIV. We determined the role of FUT2 in otitis media susceptibility by obtaining DNA samples from 609 multi-ethnic families and simplex case subjects with otitis media. Exome and Sanger sequencing, linkage analysis, and Fisher exact and transmission disequilibrium tests (TDT) were performed. The common FUT2 c.604C>T (p.Arg202∗) variant co-segregates with otitis media in a Filipino pedigree (LOD = 4.0). Additionally, a rare variant, c.412C>T (p.Arg138Cys), is associated with recurrent/chronic otitis media in European-American children (p = 1.2 × 10-5) and US trios (TDT p = 0.01). The c.461G>A (p.Trp154∗) variant was also over-transmitted in US trios (TDT p = 0.01) and was associated with shifts in middle ear microbiota composition (PERMANOVA p < 10-7) and increased biodiversity. When all missense and nonsense variants identified in multi-ethnic US trios with CADD > 20 were combined, FUT2 variants were over-transmitted in trios (TDT p = 0.001). Fut2 is transiently upregulated in mouse middle ear after inoculation with non-typeable Haemophilus influenzae. Four FUT2 variants-namely p.Ala104Val, p.Arg138Cys, p.Trp154∗, and p.Arg202∗-reduced A antigen in mutant-transfected COS-7 cells, while the nonsense variants also reduced FUT2 protein levels. Common and rare FUT2 variants confer susceptibility to otitis media, likely by modifying the middle ear microbiome through regulation of A antigen levels in epithelial cells. Our families demonstrate marked intra-familial genetic heterogeneity, suggesting that multiple combinations of common and rare variants plus environmental factors influence the individual otitis media phenotype as a complex trait.


Assuntos
Fucosiltransferases/genética , Variação Genética/genética , Otite Média/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Orelha Média/microbiologia , Exoma/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Otite Média/microbiologia , Linhagem , Galactosídeo 2-alfa-L-Fucosiltransferase
19.
J Nutr ; 151(3): 556-569, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33382407

RESUMO

BACKGROUND: Preconceptional maternal small-quantity lipid-based nutrient supplementation (SQLNS) improved intrauterine linear growth in low-resource countries as demonstrated by the Women First Preconception Maternal Nutrition Trial (WF). Fetal growth is dependent on nutrient availability and regulated by insulin-like growth factor 1 (IGF-1) through changes in placental transfer capacity, mediated by the mechanistic target of rapamycin (mTOR) pathway. OBJECTIVES: Our objective was to evaluate the role of placental mTOR and IGF-1 signaling on fetal growth in women from 2 low-resource countries with high rates of stunting after they received preconceptional SQLNS. METHODS: We studied 48 women from preconception through delivery who were from Guatemala and Pakistan and received SQLNS or not, as part of the WF study. Placental samples were obtained at delivery (control, n = 24; SQLNS, n = 24). Placental protein or mRNA expression of eukaryotic translation initiation factor binding protein-1 (4E-BP1), ribosomal protein S6 (rpS6), AMP-activated protein kinase α (AMPKA), IGF-1, insulin-like growth factor receptor (IGF-1R), and pregnancy associated plasma protein (PAPP)-A, and DNA methylation of the IGF1 promoter were determined. Maternal serum IGF-1, insulin-like growth factor binding protein (IGFBP)-3, IGFBP-4, IGFBP-5, PAPP-A, PAPP-A2, and zinc were measured. RESULTS: Mean ± SEM maternal prepregnancy BMI differed between participants in Guatemala (26.5 ± 1.3) and Pakistan (19.8 ± 0.7) (P < 0.001). In Pakistani participants, SQLNS increased the placental rpS6(T37/46):rpS6 ratio (1.5-fold) and decreased the AMPKA(T172):AMPKA ratio. Placental IGF1 mRNA expression was positively correlated with birth length and birth weight z-scores. Placental PAPP-A (30-fold) and maternal serum zinc (1.2-fold) increased with SQLNS. In Guatemalan participants SQLNS did not influence placental mTOR signaling. Placental IGF-1R protein expression was positively associated with birth length and birth weight z-scores. SQLNS increased placental PAPP-A (40-fold) and maternal serum IGFBP-4 (1.6-fold). CONCLUSIONS: In Pakistani pregnant women with poor nutritional status, preconceptional SQLNS activated placental mTOR and IGF-1 signaling and was associated with improved fetal growth. In contrast, in Guatemalan women SQLNS did not activate placental nutrient-sensing pathways. In populations experiencing childhood stunting, preconceptional SQLNS improves placental function and fetal growth only in the context of poor maternal nutrition. This trial was registered at clinicaltrials.gov as NCT01883193.


Assuntos
Suplementos Nutricionais , Fator de Crescimento Insulin-Like I/metabolismo , Lipídeos/química , Placenta/metabolismo , Cuidado Pré-Concepcional , Serina-Treonina Quinases TOR/metabolismo , Países em Desenvolvimento , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/genética , Placenta/efeitos dos fármacos , Gravidez , Serina-Treonina Quinases TOR/genética
20.
Nature ; 520(7549): 670-674, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25707804

RESUMO

Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Estudos de Associação Genética , Genoma Humano/genética , Imunoglobulina E/sangue , Adolescente , Adulto , Asma/sangue , Asma/genética , Criança , Ilhas de CpG/genética , Eosinófilos/citologia , Eosinófilos/metabolismo , Feminino , Humanos , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA