Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
2.
J Environ Manage ; 365: 121492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944960

RESUMO

Mineral extraction plays a pivotal role in economic growth and development of the Global South, serving as a cornerstone for numerous industries and contributing significantly to national economies. However, its exploitation often comes with significant environmental and social challenges. This research paper examines the impacts of mineral extraction on environmental sustainability and social equity in the Global South, focusing particularly on China over the past two decades (2002-2022). Utilizing the Dynamic Autoregressive Distributed Lag (DARDL) methodology, we offer a comprehensive empirical analysis of the impact of mineral extraction on environmental and social implications. Our findings provide an in-depth perspective, highlighting the multifaceted nature of this relationship. The study underscores the temporal dynamics and evolving nature of the environmental and social repercussions associated with mineral extraction. It offers critical insights for policymakers, industry stakeholders, and civil society organizations engaged in the Global South.


Assuntos
Minerais , China , Desenvolvimento Econômico , Conservação dos Recursos Naturais , Humanos , Meio Ambiente
3.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485510

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , Tupaiidae
4.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768757

RESUMO

Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state NMR technique to confirm its properties. In the present study, this isolated Levan was utilized as a carrier for drug delivery applications. The optimized spray-dried nanoparticles exhibited a smooth surface morphology with particle sizes ranging from 195 to 329 nm. In the in-vitro drug release experiments conducted in water media, the spray-dried nanoparticles showed 100 % release, whereas the unprocessed drug exhibited only 50 % release at the end of 24 h. Notably, the drug release in milk was comparable to that in plain media, indicating the compatibility. The improved dissolution rate observed for the nanoparticles could be attributed to the solid-state conversion (confirmed by XRD analysis) of DTG from its crystalline to amorphous state. The stability of the drug was verified using Fourier Transform Infra-Red Spectroscopy and Thermogravimetry-Differential Scanning Calorimetry analysis. To evaluate the in-vitro cellular toxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted, which revealed the CC50 value of 88.88 ± 5.10 µg/mL for unprocessed DTG and 101.08 ± 37.37 µg/mL for DTG nanoparticles. These results indicated that the toxicity of the nanoparticles was comparable to the unprocessed drug. Furthermore, the anti-HIV activity of the nanoparticles in human cell lines was found to be similar to that of the pure drug, emphasizing the therapeutic efficacy of DTG in combating HIV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA