Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Nature ; 630(8015): 64-69, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750364

RESUMO

The interplay among frustrated lattice geometry, non-trivial band topology and correlation yields rich quantum states of matter in kagome systems1,2. A series of recent members in this family, AV3Sb5 (A = K, Rb or Cs), exhibit a cascade of symmetry-breaking transitions3, involving the 3Q chiral charge ordering4-8, electronic nematicity9,10, roton pair density wave11 and superconductivity12. The nature of the superconducting order is yet to be resolved. Here we report an indication of dynamic superconducting domains with boundary supercurrents in intrinsic CsV3Sb5 flakes. The magnetic field-free superconducting diode effect is observed with polarity modulated by thermal histories, suggesting that there are dynamic superconducting order domains in a spontaneous time-reversal symmetry-breaking background. Strikingly, the critical current exhibits double-slit superconductivity interference patterns when subjected to an external magnetic field. The characteristics of the patterns are modulated by thermal cycling. These phenomena are proposed as a consequence of periodically modulated supercurrents flowing along certain domain boundaries constrained by fluxoid quantization. Our results imply a time-reversal symmetry-breaking superconducting order, opening a potential for exploring exotic physics, for example, Majorana zero modes, in this intriguing topological kagome system.

2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091468

RESUMO

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , Apoptose/genética , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , China , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/genética
3.
J Infect Dis ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186695

RESUMO

BACKGROUND: In 2016, China has implemented the World Health Organization's "treat all" policy. We aimed to assess the impact of significant improvements in the 95-95-95 targets on population-level human immunodeficiency virus (HIV) transmission dynamics and incidence. METHODS: We focused on 3 steps of the HIV care continuum: diagnosed, on antiretroviral therapy, and achieving viral suppression. The molecular transmission clusters were inferred using HIV-TRACE. New HIV infections were estimated using the incidence method in the European Centre for Disease Prevention and Control HIV Modelling Tool. RESULTS: Between 2004 and 2023, the national HIV epidemiology database recorded 2.99 billion person-times of HIV tests and identified 1 976 878 new diagnoses. We noted a roughly "inverted-V" curve in the clustering frequency, with the peak recorded in 2014 (67.1% [95% confidence interval, 63.7%-70.5%]), concurrent with a significant improvement in the 95-95-95 targets from 10-13-<71 in 2005 to 84-93-97 in 2022. Furthermore, we observed a parabolic curve for a new infection with the vertex occurring in 2010. CONCLUSIONS: In general, it was suggested that the improvements in the 95-95-95 targets were accompanied by a reduction in both the population-level HIV transmission rate and incidence. Thus, China should allocate more effort to the first "95" target to achieve a balanced 95-95-95 target.

4.
J Infect Dis ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189826

RESUMO

BACKGROUND: National treatment guidelines of China evolving necessitates population-level surveillance of transmitted drug resistance (TDR) to inform or update HIV treatment strategies. METHODS: We analyzed the demographic, clinical, and virologic data obtained from people with HIV (PWH) residing in 31 provinces of China who were newly diagnosed between 2018 and 2023. Evidence of TDR was defined by the World Health Organization list for surveillance of drug resistance mutations. RESULTS: Among the 22 124 PWH with protease and reverse transcriptase sequences, 965 (4.36%; 95% CI, 4.1-4.63) had at least 1 TDR mutation. The most frequent TDR mutations were nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.39%; 95% CI, 2.19%-2.59%), followed by nucleoside reverse transcriptase inhibitor mutations(1.35%; 95% CI, 1.2%-1.5%) and protease inhibitor mutations (1.12%; 95% CI, .98%-1.26%). The overall protease and reverse transcriptase TDR increased significantly from 4.05% (95% CI, 3.61%-4.52%) in 2018 to 5.39% (95% CI, 4.33%-6.57%) in 2023. A low level of integrase strand transfer inhibitor TDR was detected in 9 (0.21%; 95% CI, .1%-.38%) of 4205 PWH. CONCLUSIONS: Presently, the continued use of NNRTI-based first-line antiretroviral therapy regimen for HIV treatment has been justified.

5.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317113

RESUMO

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Prótons , Cloreto de Sódio/farmacologia , Antiporters/genética , Antiporters/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Cátions/metabolismo , Estresse Fisiológico/genética
6.
BMC Plant Biol ; 24(1): 41, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195408

RESUMO

BACKGROUND: Salinity stress is an environmental constraint that normally develops concurrently under field conditions, resulting in drastic limitation of rice plant growth and grain productivity. The objective of this study was to explore the alleviating effects of NaCl pre-treatment on rice seedlings as well as the salt tolerance mechanisms by evaluating morph-physiological traits. RESULTS: Variety Huanghuazhan, either soaked in distilled water or 25 mg/L Prohexadione calcium (Pro-Ca), were first hardened with varying concentrations of NaCl solutions (0 and 50 mM NaCl), and then subjected to varying degrees of salt stress (0 and 100 mM NaCl), indicated by S0, S1, S2 and S3, respectively. Growth analysis suggested that NaCl-pretreatment improved the root/shoot ratio in water-soaked rice plant at DAP 0. Data related to the reaction center density, photosynthetic electron transport efficiency, trapping efficiency were compared before (CK) using performance Index (PIabs). Compared to S2 (Pro-Ca-S2) treatment, PIabs did not show any difference with plants pre-treated with NaCl (S3 or Pro-Ca-S3). Rather than PIabs, significant difference was found in photosynthetic electron transport efficiency (ΨEo). The ΨEo value in Pro-S2 was significantly lowered as compared to Pro-S3 treatment at DAP 7, and the decrease rate was about 6.5%. Correlation analysis indicated leaf PIabs was weak correlated with plant biomass while the quantum yield for reduction of the PSI end electron acceptors, trapped energy flux per reaction center and PSII antenna size displayed strong positive correlation with biomass. Additional analysis revealed that 100 mM NaCl significantly reduced leaf linear electron flux under low-light conditions, regardless of whether seedlings had been pre-treated with 50 mM NaCl or not. CONCLUSIONS: NaCl-induced salt tolerance was related to the robust photosynthetic machinery.


Assuntos
Oryza , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Fotossíntese , Cálcio , Água
7.
Small ; 20(34): e2312210, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38600878

RESUMO

Oxygen-vacancy (Ov) engineering is an effective strategy to manipulate the electronic configuration of catalysts for electrochemical nitrogen reduction reaction (eNRR). The influence of the stable facet on the electronic configuration of Ov is widely studied, however, the effect of the reactive facet on the local electron density of Ov is unveiled. In this work, an eNRR electrode R(111)-TiO2/HGO is provided with a high proportion exposed reactive facet (111) of rutile-TiO2 (denoted as R(111)-TiO2) nanocrystals with Ov anchored in hierarchically porous graphite oxide (HGO) nanofilms. The R(111)-TiO2/HGO exhibits excellent eNRR performance with an NH3 yield rate of 20.68 µg h-1 cm-2, which is ≈20 times the control electrode with the most stable facet (110) exposed (R(110)-TiO2/HGO). The experimental data and theoretical simulations reveal that the crystal facet (111) has a positive effect on regulating the local electron density around the oxygen vacancy and the two adjacent Ti-sites, promoting the π-back-donation, minimizing the eNRR barrier, and transforming the rate determination step to *NNH→*NNHH. This work illuminates the effect of crystal facet on the performance of eNRR, and offers a novel strategy to design efficient eNRR catalysts.

8.
J Transl Med ; 22(1): 861, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334238

RESUMO

BACKGROUND: Gene methylation and the immune-related tumor microenvironment (TME) are highly correlated in tumor progression and therapeutic efficacy. Although both of them can be used to predict the clinical outcomes of colorectal cancer (CRC) patients, their predictive value is still unsatisfactory. Whether a combination risk model comprising these two prediction parameters performs better predictive effectiveness than independent factor is still unclear. Methylated Septin9 (mSEPT9) is an early diagnosis biomarker of CRC, in this study, we aimed to investigate mSEPT9-related biomarkers of immunosuppressive TME and identify the value of the combination risk model in predicting the clinical outcomes of CRC. METHODS: Immunofluorescence staining was performed to clarify the correlation between intratumoral IL-10+ Treg infiltration and mSEPT9 in peripheral blood. Survival time, response to 5-fluorouracil (5-FU)-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis were analyzed in study (197 CRC samples) and validation (195 CRC samples) sets to evaluate the efficacy of combination risk model. Potential mechanisms were explored by mRNA sequencing. RESULTS: Hypermethylated SEPT9 in the peripheral blood of patients with CRC (stage I-III, and stage IV with resectable M1) before radical resection was positively correlated with high intratumoral IL-10+ Treg infiltration. The high-risk model revealed poor overall survival and progression-free survival, inferior therapeutic response to 5-FU-based chemotherapy and PD-1 blockade, and high probability of recurrence or metastasis. The underlying mechanisms may be associated with the increase in mSEPT9 and mediation of IL-10 via methionine metabolic reprogramming-induced infiltration of IL-10+ Tregs in the TME, which promotes tumor progression and resistance to 5-FU-based chemotherapy and PD-1 blockade. CONCLUSIONS: The combination risk model of peripheral mSETP9 and intratumoral IL-10+ Treg infiltration in CRC can effectively predict prognosis, responsiveness to 5-FU-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis. Therefore, this model can be used for precision treatment of CRC.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Interleucina-10 , Nomogramas , Septinas , Linfócitos T Reguladores , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Septinas/genética , Septinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , Microambiente Tumoral/imunologia , Prognóstico , Idoso , Fluoruracila/uso terapêutico
9.
Chemistry ; 30(20): e202303249, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37997008

RESUMO

Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.

10.
Protein Expr Purif ; 226: 106604, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243999

RESUMO

The L-isoleucine-4-dioxygenase converts L-isoleucine (Ile) into(2S,3R,4S)-4-(OH)-isoleucine (4-HIL), a naturally occurring hydroxyl amino acid, which is a promising compound for drug and functional food development. Here, a novel L-isoleucine-4-dioxygenase (RaIDO) from Rahnella aquatilis was cloned, expressed and characterized, as one of only a few reported L-isoleucine-4-dioxygenases. RaIDO showed high catalytic efficiency with Ile as the substrate, as well as good stability. HPLC-MS and NMR confirmed that RaIDO converts Ile into (2S,3R,4S)-4-(OH)-isoleucine. Further, structural analysis of RaIDO revealed key active site residues, including H159, D161 and H212. The RaIDO enzyme showed an optimal reaction temperature range of 30°C-45 °C, with the highest catalytic activity observed at 40 °C. Additionally, the enzyme exhibited an optimal pH of 8.0. Thus, the novel L-isoleucine-4-dioxygenase (RaIDO) has high catalytic efficiency and good stability, making it a strong candidate for industrial applications.

11.
Ann Allergy Asthma Immunol ; 132(6): 737-744, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38403159

RESUMO

BACKGROUND: The in vitro specific IgE (sIgE) assays now commonly used in clinical laboratories are not only time-consuming and expensive but also require many serum samples. To address these limitations, a novel fluorescent microsphere-based multiplex flow cytometric immunoassay was developed. This innovative assay enables rapid and simultaneous quantitative detection of multiple allergen-sIgE antibodies. OBJECTIVE: To establish a new method for the simultaneous quantitative detection of 6 allergen-sIgE antibodies based on fluorescence multiplex flow cytometry. METHODS: Six different encoded fluorescent microspheres were selected to covalently couple 6 allergens, and their antigen-coupling activities were verified. After optimizing the multiplexing procedure and reaction conditions, including the concentration of microspheres encapsulated by allergens, reaction temperature, and reaction time, standard curves were established to quantify the 6 allergen-sIgE, and their performance was evaluated according to clinical guidelines. RESULTS: The chosen analytical mode was optimized for the detection of the 6 allergens-sIgE for 70 minutes. The established coefficients of variation for multiplex flow cytometry reproducibility and intermediate precision were less than 10%. Linear regression analysis showed a highly significant quantitative correlation between the results of the multiple analyses of Dermatophagoides pteronyssinus, Dermatophagoides farinae, Artemisia, and cat hair allergens and ImmunoCAP (Thermo Fisher Scientific): the r2 values ranged from 0.85 to 0.97 (P < .0001). In addition, there was a high correlation between the results of the multiplex analysis of dog hair allergens and the capture enzyme-linked immunosorbent assay (r2 = 0.92, P < .0001). CONCLUSION: A high-throughput system called multiplex flow cytometry has been developed for the simultaneous detection of 6 inhalant allergens. The method has the advantage of being rapid and using less serum. Furthermore, it has the potential to be expanded to include other allergens and biologic agents.


Assuntos
Alérgenos , Citometria de Fluxo , Imunoglobulina E , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Citometria de Fluxo/métodos , Humanos , Alérgenos/imunologia , Animais , Imunoensaio/métodos , Microesferas , Reprodutibilidade dos Testes , Dermatophagoides pteronyssinus/imunologia , Dermatophagoides farinae/imunologia
12.
Inorg Chem ; 63(17): 7946-7954, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619069

RESUMO

Advancing the progress of sustainable and green energy technologies requires the improvement of valid electrocatalysts for the hydrogen evolution reaction (HER). Reconfiguring charge distribution through heteroatom doping-induced vacancy serves as an effective approach to implement high performance for HER catalysts. Here, we successfully fabricated Fe-doped CuS (FeCuS) with the sublayer sulfur vacancy to judge its HER performance and dissect the activity origins. Density functional theory calculation further elucidates that the primary factor contributing to the heightened HER activity is that the sublayer sulfur vacancies awaken the charge redistribution. In addition to effectively decreasing the energy barrier associated with the Volmer step, it modulates the adsorption/desorption capacity of H*. As a result, its intrinsic activity for the HER has significantly increased. Concretely, the obtained FeCuS displays an excellent catalytic performance, whose Tafel slope is only 59 mV dec-1 and the overpotential (at 10 mA cm-2) is as low as 71 mV in an alkaline environment, surpassing the majority of previously documented catalysts in scientific literature. This work shows that the construction of sublayer sulfur vacancies by Fe doping can achieve the charge redistribution and precise tuning of electronic structure; thereby, the inert CuS can be transformed into highly efficient electrocatalysts.

13.
Environ Sci Technol ; 58(42): 18800-18810, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39177477

RESUMO

Electrochemical sensing (ES) is crucial for improving data acquisition in wastewater treatment, but obtaining the signal for a low electroactive analyte is challenging. Here, we propose an electrochemical acid-base transport limitation (eABTL) principle for inertness-based sensing, offering a new insight into generating ES signals from an interfacial transport process rather than electron transfer. This principle enables potential ES application for various weak acids and bases (WABs) without reactions themselves. We established an eABTLP method for detecting orthophosphate in solutions as a proof of concept, demonstrating commendable accuracy and precision, and a wide detection range from 10 µM to over 300 mM. Endogenous interferences were identified using 23 weak acids, indicating no significant endogenous interfering factors in typical wastewaters. Of them, volatile fatty acids are the main interference, but their effect can be eliminated by adjusting pH above 6.0. Exogenous factors like anions, cations, ion strength, temperature, organic load, and dissolved oxygen were examined, and most of their effects can be ignored by maintaining consistent analytical procedures between calibration curve and sample. Furthermore, measurement of wastewater samples confirmed the applicability toward domestic wastewater and demonstrated its wide applicability when combined with digestion pretreatment. Given the merits of inertness-based sensing, the eABTL-based methods have the potential to be a crucial part of ES techniques for environmental and industrial monitoring.


Assuntos
Técnicas Eletroquímicas , Águas Residuárias , Águas Residuárias/química , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
14.
Macromol Rapid Commun ; : e2400527, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137308

RESUMO

With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.

15.
J Asthma ; 61(1): 10-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421635

RESUMO

BACKGROUND: In vitro specific IgE (sIgE) testing has become an important tool for the diagnosis of IgE-mediated allergic diseases. Current methods used to detect allergen sIgE are time consuming and/or expensive. Therefore, a new method was developed for rapid quantitative detection of cat dander-sIgE antibody based on homogeneous chemiluminescence immunoassay. METHODS: Selection of chemibeads with different chemical groups, and the best Light-initiated chemiluminescence assay (LiCA) analytical mode for cat dander-sIgE detection. To validate and eliminate the interference of IgE on the detection of cat dander-sIgE, concentration of biotinylated anti-human IgE antibody was optimized. For quantification of cat dander-sIgE, a calibration curve was established, and the performance of the assay was evaluated according to clinical guidelines. RESULTS: Indirect LiCA is the best mode of analysis and biotinylated anti-human IgE antibody at a dilution ratio of 1:250 minimizes IgE interference. The coefficient of variation of the developed LiCA was 1.49% to 4.66%, with an intermediate precision of 6.90% to 8.21%. The LoB, LoD, and LoQ of the assay were 0.023 kUA/L, 0.056 kUA/L and 0.185 kUA/L. The coefficient of correlation (r) between LiCA and ImmounoCAP was 0.9478. CONCLUSIONS: A cat dander-sIgE quantitation assay based on homogeneous chemiluminescence immunoassay was established, which could be a new reliable analytical tool for the determination of cat dander-sIgE.


Assuntos
Alérgenos , Asma , Humanos , Alérgenos Animais , Luminescência , Imunoglobulina E , Imunossupressores , Imunoensaio/métodos
16.
J Chem Phys ; 161(10)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39248384

RESUMO

Water adsorption energy, Eads, is a key physical quantity in sustainable chemical technologies such as (photo)electrocatalytic water splitting, water desalination, and water harvesting. In many of these applications, the electrode surface is operated outside the point (potential) of zero charge, which attracts counter-ions to form the electric double layer and controls the surface properties. Here, by applying density functional theory-based finite-field molecular dynamics simulations, we have studied the effect of water adsorption energy Eads on surface acidity and the Helmholtz capacitance of BiVO4 as an example of metal oxide electrodes with weakly chemisorbed water. This allows us to establish the effect of Eads on the coordination number, the H-bond network, and the orientation of chemisorbed water by comparing an oxide series composed of BiVO4, TiO2, and SnO2. In particular, it is found that a positive correlation exists between the degree of asymmetry ΔCH in the Helmholtz capacitance and the strength of Eads. This correlation is verified and extended further to graphene-like systems with physisorbed water, where the electric double layers (EDLs) are controlled by electronic charge rather than proton charge as in the oxide series. Therefore, this work reveals a general relationship between water adsorption energy Eads and EDLs, which is relevant to both electrochemical reactivity and the electrowetting of aqueous interfaces.

17.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652181

RESUMO

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Assuntos
Arabidopsis , Fenótipo , Estômatos de Plantas , Zea mays , Estômatos de Plantas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia
18.
Tohoku J Exp Med ; 263(3): 175-184, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38658346

RESUMO

Neoadjuvant pyrotinib shows the potential to improve treatment response in human epidermal receptor 2 (HER2)-positive breast cancer patients, but relevant meta-analyses are scarce. This meta-analysis intended to explore the efficacy and safety of neoadjuvant pyrotinib for HER2-positive breast cancer patients. Studies comparing the efficacy and safety between HER2-positive breast cancer patients receiving pyrotinib-containing neoadjuvant treatment (pyrotinib group) and those receiving other neoadjuvant treatments (control group), were searched in EMBASE, Web of Science, Cochrane, PubMed, China National Knowledge Infrastructure, Wanfang, and SinoMed until December 2023. Six randomized controlled trials (RCTs) and 4 cohort studies were included. The pyrotinib group and control group contained 540 and 684 patients, respectively. Pathological complete response (pCR) was higher in the pyrotinib group than in the control group [relative risk (RR)=1.93; 95% confidence interval (CI) = 1.63-2.29; P < 0.001]. Similar results were discovered in subgroup analyses of RCTs (RR = 1.89; 95% CI = 1.49-2.40; P < 0.001) and cohort studies (RR = 1.98; 95% CI = 1.55-2.53; P < 0.001). The objective response rate (ORR) was also higher in the pyrotinib group than in the control group (RR = 1.14; 95% CI = 1.07-1.21; P < 0.001). Regarding adverse events, only the incidence of diarrhea was increased in the pyrotinib group versus the control group (RR = 1.97; 95% CI = 1.31-2.96; P = 0.001), while others were not different, including nausea and vomiting, leukopenia, thrombocytopenia, hand-foot syndrome, and alopecia (all P > 0.05). No publication bias existed, and sensitivity analysis suggested the satisfactory robustness of this meta-analysis. In conclusion, compared with other neoadjuvant treatments, pyrotinib-containing neoadjuvant treatment achieves a better treatment response with a good safety profile in HER2-positive breast cancer patients.


Assuntos
Acrilamidas , Neoplasias da Mama , Terapia Neoadjuvante , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Receptor ErbB-2/metabolismo , Resultado do Tratamento , Acrilamidas/uso terapêutico , Acrilamidas/efeitos adversos , Aminoquinolinas/uso terapêutico , Aminoquinolinas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Ecotoxicol Environ Saf ; 285: 117125, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39369661

RESUMO

The entry of Cd into soil-rice systems is a growing concern as it can pose potential risks to public health. To derive regional soil Cd threshold, a total of 333 paired soil and rice samples was collected in Anhui Province, Eastern China. The results showed that the total soil Cd and soil Zn/Cd were the most significant variables contributing to Cd content in polished rice. The Chinese Soil Quality Standards might overestimate risk posed by Cd-contaminated soil for rice production in the mining area due to high Zn/Cd values of some mining-associated soils. Cd levels in polished rice can be predictable using stepwise multiple linear regression (MLR) model. However, the derived soil Cd threshold based on the MLR model would be unrealistically high. The classification and regression tree method (CART) performed well in simulating Cd levels in polished rice and can be used to derive soil Cd threshold instead of MLR to minimize the uncertainty.


Assuntos
Cádmio , Monitoramento Ambiental , Oryza , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , China , Solo/química , Monitoramento Ambiental/métodos , Modelos Lineares , Mineração
20.
Lasers Med Sci ; 39(1): 228, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210165

RESUMO

Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied. This study aimed to investigate the effects of 630 nm laser on apoptosis, metastasis, invasion, and epithelial-mesenchymal transition (EMT) in human lung squamous cell carcinoma H520 cells mediated by HPD. H520 cells were divided into four groups: control group, photosensitizer group, irradiation group, and HPD-PDT group. Cell proliferation was assessed using CCK8 assay; cell apoptosis was detected by Hoechst 33258 staining and flow cytometry; cell migration and invasion abilities were evaluated using wound-healing and invasion assays; and protein and mRNA expressions were analyzed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR) respectively. Results showed that HPD-PDT significantly inhibited cell proliferation, promoted apoptosis (P < 0.05), suppressed cell migration and invasion (P < 0.05), decreased Bcl-2 mRNA expression, and increased Bax and Caspase-9 mRNA expression(P < 0.05). Western blotting analysis indicated increased expression of Bax, Caspase-9, and E-cadherin, and decreased expression of Bcl-2, N-cadherin, and Vimentin (P < 0.05). In conclusion, 630 nm laser mediated by HPD promoted cell apoptosis via upregulation of Bax and caspase-9, and downregulation of Bcl-2, and inhibited cell migration and invasion by regulating EMT in H520 cells.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Invasividade Neoplásica , Fotoquimioterapia , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Derivado da Hematoporfirina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Caderinas/metabolismo , Vimentina/metabolismo , Caspase 9/metabolismo , Caspase 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA