Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38724022

RESUMO

Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.

2.
Mol Cell ; 83(9): 1527-1537.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086725

RESUMO

Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.


Assuntos
Proteínas Ribossômicas , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas
3.
Anal Chem ; 91(15): 10064-10072, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31286772

RESUMO

Although low-molecular-weight (LMW) biothiols function as a disease indicator in plasma, rapidly and effectively analyzing them remains challenging in the extracellular oxidative environment due to technical difficulties. Here, we report a newly designed, affinity pulldown platform using a Bacillus subtilis-derived organic hydroperoxide resistance regulatory (OhrRBS) protein and its operator dsDNA for rapid and cost-effective analyses of plasma LMW biothiols. In the presence of organic hydroperoxide, LMW biothiols triggered the rapid dissociation of FAM-labeled dsDNA from FLAG-tagged OhrRBS via S-thiolation of OhrRBS on anti-FLAG antibody-coated beads, which led to a strong increase of fluorescence intensity in the supernatant after pulldown. This method was easily extended by using a reducing agent to detect free and total LMW biothiols simultaneously in mouse plasma. Unlike free plasma LMW biothiols, total plasma LMW biothiols were more elevated in ΔLDLR mice than those in normal mice. Owing to the rapid dissociation of OhrR/dsDNA complexes in response to LMW biothiols, this pulldown platform is immediately suitable for monitoring rapid redox changes in plasma LMW biothiols as well as studying oxidative stress and diseases in blood.


Assuntos
Proteínas de Bactérias/química , DNA/química , Espectrometria de Fluorescência/métodos , Compostos de Sulfidrila/sangue , Animais , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Derivados de Benzeno/química , Cisteína/sangue , Cisteína/química , DNA/metabolismo , Glutationa/sangue , Glutationa/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Oxirredução , Receptores de LDL/deficiência , Receptores de LDL/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química
4.
Biochem Biophys Res Commun ; 501(2): 458-464, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29738773

RESUMO

PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe2+ or Mn2+) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H2O2 sensing by PerR is mediated by Fe2+-dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H2O2. Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H2O2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H2O2 in the presence of excess Fe2+ sufficient for the formation of the Fe2+-bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe2+, suggesting that Fe2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe2+, but not for Mn2+, when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe2+-binding affinity required for the sensing of the physiologically relevant Fe2+-levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H2O2. In comparison, the D85E-PerR did not show a perturbed change in Fe2+-binding affinity, however, it displayed a slightly decreased sensitivity to H2O2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H2O2 sensitivity.


Assuntos
Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Polarização de Fluorescência , Ligantes , Oxirredução , Oxigênio/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Biochem Biophys Res Commun ; 502(1): 48-54, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777693

RESUMO

Molybdenum cofactor (Moco), molybdopterin (MPT) complexed with molybdenum, is an essential cofactor required for the catalytic center of diverse enzymes in all domains of life. Since Moco cannot be taken up as a nutrient unlike many other cofactors, Moco requires de novo biosynthesis. During the synthesis of MPT, the sulfur atom on the C-terminus of MoaD is transferred to cyclic pyranopterin monophosphate (cPMP) which is bound in the substrate pocket of MoaE. MoaD is a ubiquitin-like (Ubl) protein and has a C-terminal di-Gly motif which is a common feature of Ubl proteins. Despite the importance of free C terminal di-Gly motif of MoaD as a sulfur carrier, some bacteria encode a fused MPT synthase in which MoaD- and MoaE-like domains are located on a single peptide. Although it has recently been reported that the fused MPT synthase MoaX from Mycobacterium tuberculosis is posttranslationally cleaved into functional MoaD and MoaE in M. smegmatis, the protease responsible for the cleavage of MoaD-MoaE fusion protein has remained unknown to date. Here we report that the JAMM/MPN+ domain containing metalloprotease DR0402 (JAMMDR) from Deinococcus radiodurans can cleave the MoaD-MoaE fusion protein DR2607, the sole MPT synthase in D. radiodurans, generating the MoaD having a C-terminal di-Gly motif. Furthermore, JAMMDR can also cleave off the MoaD from MoaD-eGFP fusion protein suggesting that JAMMDR recognizes the MoaD region rather than MoaE region in the cleaving process of MoaD-MoaE fusion protein.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Metaloproteases/metabolismo , Sulfurtransferases/metabolismo , Sequência de Aminoácidos , Deinococcus/química , Deinococcus/metabolismo , Metaloproteases/química , Domínios Proteicos , Proteólise , Sulfurtransferases/química
6.
Biochem Biophys Res Commun ; 484(1): 125-131, 2017 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-28104400

RESUMO

PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerRBL, PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerRBL in B. licheniformis. In vitro and in vivo studies indicate that PerRBL, like PerRBS, uses either Fe2+ or Mn2+ as a corepressor and only the Fe2+-bound form of PerRBL senses low levels of H2O2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H2O2 sensitivity, if any, between PerRBL and PerRBS, B. licheniformis expressing PerRBL or PerRBS could sense lower levels of H2O2 and was more sensitive to H2O2 than B. subtilis expressing PerRBL or PerRBS. This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerRBS and PerRBLper se, affect the H2O2 sensing ability of PerR inside the cell and the H2O2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerRSA), which is more sensitive to H2O2 than PerRBL and PerRBS, were more resistant to H2O2 than those expressing either PerRBL or PerRBS. This result indicates that the sufficient difference in H2O2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H2O2.


Assuntos
Bacillus licheniformis/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Polarização de Fluorescência , Histidina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Oxirredução , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Sci Adv ; 8(8): eabl4386, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213229

RESUMO

Although ribosome assembly is quality controlled to maintain protein homeostasis, different ribosome populations have been described. How these form, especially under stress conditions that affect energy levels and stop the energy-intensive production of ribosomes, remains unknown. Here, we demonstrate how a physiologically relevant ribosome population arises during high Na+, sorbitol, or pH stress via dissociation of Rps26 from fully assembled ribosomes to enable a translational response to these stresses. The chaperone Tsr2 releases Rps26 in the presence of high Na+ or pH in vitro and is required for Rps26 release in vivo. Moreover, Tsr2 stores free Rps26 and promotes reincorporation of the protein, thereby repairing the subunit after the Na+ stress subsides. Our data implicate a residue in Rps26 involved in Diamond Blackfan Anemia in mediating the effects of Na+. These data demonstrate how different ribosome populations can arise rapidly, without major energy input and without bypass of quality control mechanisms.

8.
J Microbiol ; 55(6): 457-463, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28434086

RESUMO

PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerRBL, PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerRBL and PerRBS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.


Assuntos
Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Repressoras/metabolismo , Sideróforos/metabolismo
9.
PLoS One ; 11(5): e0155539, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27176811

RESUMO

The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.


Assuntos
Bacillus licheniformis/metabolismo , Proteínas de Bactérias/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Peróxido de Hidrogênio/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Oxirredução , Proteínas Repressoras/metabolismo , Zinco/metabolismo
10.
Kisaengchunghak Chapchi ; 23(2): 236-240, 1985 Dec.
Artigo em Coreano | MEDLINE | ID: mdl-12888666

RESUMO

A case of Strongyloides stercoralis infection wss experienced in a 73-year old Korean female patient, was hospitalized with relapse of cholecystitis. The patient developed cough and dyspnea 17 days after the admission. On the 27th hospitalized day, diarrhoea, nausea, vomiting and abdominal pain started. A number of parasitic larvae were incubated at 25 degrees C for 2 days. Typical fork tailed filariform larvae of S. stercoralis (Bavay, 1876) Stiles and Hassall, 1902, were identified after cultivation. There was no improvement of diarrhoea after the medication with mebendazole. After the administration of thiabendazole, however, diarrhoea was stopped. On the 6th day of medication, S. stercoralis larvae were no more detected, and thereafter no larva was observed by repeated stool examinations upto 2 months after chemotherapy. The patient had the history of administration of steroid for articular rheumatism. Therefore this case seems to be a hyperinfection of S. stercoralis due to an autoinfection and to be the first report on the hyperinfected strongyloidiasis in Korea. Related literature was briefly reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA