Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(22): 15441-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24727474

RESUMO

Protons activate acid-sensing ion channel 1a (ASIC1a) in the central nervous system (CNS) although the impact of such activation on brain outputs remains elusive. Progress elucidating the functional roles of ASIC1a in the CNS has been hindered by technical difficulties of achieving acidification with spatial and temporal precision. We have implemented a method to control optically the opening of ASIC1a in brain slices and also in awake animals. The light-driven H(+) pump ArchT was expressed in astrocytes of mouse cortex by injection of adenoviral vectors containing a strong and astrocyte-specific promoter. Illumination with amber light acidified the surrounding interstitium and led to activation of endogenous ASIC1a channels and firing of action potentials in neurons localized in close proximity to ArchT-expressing astrocytes. We conclude that this optogenetic method offers a minimally invasive approach that enables examining the biological consequences of ASIC1a currents in any structure of the CNS and in the modulation of animal behaviors.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Potenciais de Ação/fisiologia , Astrócitos/fisiologia , Comunicação Celular/fisiologia , Neurônios/fisiologia , Acidose/fisiopatologia , Ácidos/metabolismo , Potenciais de Ação/efeitos da radiação , Animais , Astrócitos/citologia , Células CHO , Células Cultivadas , Córtex Cerebral/citologia , Cricetulus , Concentração de Íons de Hidrogênio , Luz , Camundongos , Neurônios/citologia , Técnicas de Cultura de Órgãos , Estimulação Luminosa , Bombas de Próton/metabolismo
2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37398110

RESUMO

We present near-atomic-resolution cryo-EM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2-2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.

3.
J Biol Chem ; 287(48): 40680-9, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23048040

RESUMO

BACKGROUND: Consecutive proton stimulation reduces ASIC1a peak currents leading to silencing of channels. RESULTS: Kinetic analysis using a fast perfusion system shows that human ASIC1a has two desensitized states with markedly different stabilities. CONCLUSION: High frequency trains of short stimuli prevent desensitization. SIGNIFICANCE: The results predict steady ASIC1a responses to high frequency release of protons as in synaptic transmission. ASIC1a is a neuronal sodium channel activated by external H(+) ions. To date, all the characterization of ASIC1a has been conducted applying long H(+) stimuli lasting several seconds. Such experimental protocols weaken and even silence ASIC1a currents to repetitive stimulation. In this work, we examined ASIC1a currents by methods that use rapid application and removal of H(+). We found that brief H(+) stimuli, <100 ms, even if applied at high frequency, prevent desensitization thereby generate full and steady peak currents of human ASIC1a. Kinetic analysis of recovery from desensitization of hASIC1a revealed two desensitized states: short- and long-lasting with time constants of τ(Ds) ≤0.5 and τ(Dl) = 229 s, while in chicken ASIC1a the two desensitized states have similar values τ(D) 4.5 s. It is the large difference in stability of the two desensitized states that makes hASIC1a desensitization more pronounced and complex than in cASIC1a. Furthermore, recovery from desensitization was unrelated to cytosolic variations in pH, ATP, PIP(2), or redox state but was dependent on the hydrophobicity of key residues in the first transmembrane segment (TM1). In conclusion, brief H(+)-stimuli maintain steady the magnitude of peak currents thereby the ASIC1a channel is well poised to partake in high frequency signals in the brain.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Oócitos/química , Oócitos/metabolismo , Xenopus
4.
J Membr Biol ; 245(11): 667-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22729647

RESUMO

The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.


Assuntos
Canais de Potássio/genética , Canais de Potássio/metabolismo , Linhagem Celular , Expressão Gênica , Células HEK293 , Humanos , Lítio/metabolismo , Canais de Potássio/química , Canais de Potássio/isolamento & purificação , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Sódio/metabolismo
5.
J Biol Chem ; 285(41): 31285-91, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20675379

RESUMO

Neurons of the mammalian nervous system express the proton-sensing ion channel ASIC1. Low concentrations of protons in the normal range of extracellular pH, pH 7.4-7.3, shut the pore by a conformational transition referred as steady-state desensitization. Therefore, the potential of local acidification to open ASIC1 relies on proton affinity for desensitization. This property is important physiologically and also can be exploited to develop strategies to increase or decrease the channel response to protons. In a previous study (Li, T., Yang, Y., and Canessa, C. M. (2010) J. Biol. Chem. 285, 22706-22712), we found that Leu-85 in the ß1-ß2 linker of the extracellular domain decreases the apparent proton affinity for steady-state desensitization and retards openings, slowing down the time course of the macroscopic currents. Here, we show that Asn-415 in the ß11-ß12 linker works together with the ß1-ß2 linker to stabilize a closed conformation that delays transition from the closed to the desensitized state. Substitutions of Asn-415 for Cys, Ser, or Gly render ASIC1 responsive to small increases in proton concentrations near the baseline physiological pH.


Assuntos
Asparagina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prótons , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Asparagina/genética , Concentração de Íons de Hidrogênio , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química , Canais de Sódio/genética , Xenopus laevis
6.
J Biol Chem ; 285(29): 22706-12, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20479002

RESUMO

Acid-sensing ion channels (ASICs) are proton-activated channels expressed in neurons of the central and peripheral nervous systems where they modulate neuronal activity in response to external increases in proton concentration. The size of ASIC1 currents evoked by a given local acidification is determined by the number of channels in the plasma membrane and by the apparent proton affinities for activation and steady-state desensitization of the channel. Thus, the magnitude of the pH drop and the value of the baseline pH both are functionally important. Recent characterization of ASIC1s from an increasing number of species has made evident that proton affinities of these channels vary across vertebrates. We found that in species with high baseline plasma pH, e.g. frog, shark, and fish, ASIC1 has high proton affinity compared with the mammalian channel. The beta1-beta2 linker in the extracellular domain, specifically by the substitution M85L, determines the interspecies differences in proton affinities and also the time course of ASIC1 macroscopic currents. The mechanism underlying these observations is a delay in channel opening after application of protons, most likely by stabilizing a closed conformation that decreases the apparent affinity to protons and also slows the rise and decay phases of the current. Together, the results suggest evolutionary adaptation of ASIC1 to match the value of the species-specific plasma pH. At the molecular level, adaptation is achieved by substitutions of nonionizable residues rather than by modification of the channel proton sensor.


Assuntos
Ativação do Canal Iônico , Leucina/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Prótons , Canais de Sódio/química , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Aminoácidos , Animais , Clonagem Molecular , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Técnicas de Patch-Clamp , Estabilidade Proteica , Estrutura Secundária de Proteína , Tubarões , Relação Estrutura-Atividade , Fatores de Tempo , Xenopus laevis
7.
J Neurosci ; 29(17): 5654-65, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403831

RESUMO

Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/química , Canais de Potássio/fisiologia , Processamento Alternativo/genética , Animais , Linhagem Celular , Feminino , Humanos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Canais de Potássio/biossíntese , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Xenopus laevis
8.
Am J Physiol Cell Physiol ; 299(1): C66-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427715

RESUMO

Acid-sensing ion channels (ASICs) are proton-activated sodium channels of the nervous system. Mammals express four ASICs, and orthologs of these genes have been found in all chordates examined to date. Despite a high degree of sequence conservation of all ASICs across species, the response to a given increase in external proton concentration varies markedly: from large and slowly inactivating inward currents to no detectable currents. The underlying bases of this functional variability and whether it stems from differences in proton-binding sites or in structures that translate conformational changes have not been determined yet. We show here that the ASIC1 ortholog of an early vertebrate, lamprey ASIC1, does not respond to protons; however, only two amino acid substitutions for the corresponding ones in rat ASIC1, Q77L and T85L, convert lamprey ASIC1 into a highly sensitive proton-activated channel with apparent H(+) affinity of pH(50) 7.2. Addition of C73H increases the magnitude of the currents by fivefold, and W64R confers desensitization similar to that of the mammalian counterpart. Most amino acid substitutions in these four positions increase the rates of opening and closing the pore, whereas only few, namely, the ones in rat ASIC1, slow the rates. The four residues are located in a contiguous segment made by the beta1-beta2-linker, beta1-strand, and the external segment of the first transmembrane helix. We conclude that the segment thus defined modulates the kinetics of opening and closing the pore and that fast kinetics of desensitization rather than lack of acid sensor accounts for the absence of proton-induced currents in the parent lamprey ASIC1.


Assuntos
Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Cinética , Lampreias , Potenciais da Membrana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Oócitos , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química , Canais de Sódio/genética , Especificidade da Espécie , Relação Estrutura-Atividade , Xenopus laevis
9.
Am J Physiol Cell Physiol ; 299(2): C251-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20445171

RESUMO

KCNN4 channels that provide the driving force for cAMP- and Ca(2+)-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3'-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K(+) channel beta-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated (86)Rb (K(+) surrogate) efflux with an apparent inhibitory constant of 0.6 +/- 0.1 and 7.8 +/- 0.4 muM, respectively. We conclude that apical and basolateral KCNN4 K(+) channels that regulate K(+) and anion secretion are encoded by distinct isoforms in colonic epithelial cells.


Assuntos
Clonagem Molecular/métodos , Colo/metabolismo , Regulação da Expressão Gênica , Variação Genética/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/biossíntese , Sequência de Aminoácidos , Animais , Colo/fisiologia , Feminino , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Mucosa Intestinal/metabolismo , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Xenopus
10.
Nat Commun ; 10(1): 5823, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862883

RESUMO

Purified mitochondrial ATP synthase has been shown to form Ca2+-activated, large conductance channel activity similar to that of mitochondrial megachannel (MMC) or mitochondrial permeability transition pore (mPTP) but the oligomeric state required for channel formation is being debated. We reconstitute purified monomeric ATP synthase from porcine heart mitochondria into small unilamellar vesicles (SUVs) with the lipid composition of mitochondrial inner membrane and analyze its oligomeric state by electron cryomicroscopy. The cryo-EM density map reveals the presence of a single ATP synthase monomer with no density seen for a second molecule tilted at an 86o angle relative to the first. We show that this preparation of SUV-reconstituted ATP synthase monomers, when fused into giant unilamellar vesicles (GUVs), forms voltage-gated and Ca2+-activated channels with the key features of mPTP. Based on our findings we conclude that the ATP synthase monomer is sufficient, and dimer formation is not required, for mPTP activity.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Subunidades Proteicas/metabolismo , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Subunidades Proteicas/isolamento & purificação , Suínos , Lipossomas Unilamelares/isolamento & purificação , Lipossomas Unilamelares/metabolismo
11.
J Neurosci ; 23(37): 11681-91, 2003 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-14684870

RESUMO

Neuronal stressors such as hypoxia and firing of action potentials at very high frequencies cause intracellular Na+ to rise and ATP to be consumed faster than it can be regenerated. We report the cloning of a gene encoding a K+ channel, Slick, and demonstrate that functionally it is a hybrid between two classes of K+ channels, Na+-activated (KNa) and ATP-sensitive (KATP) K+ channels. The Slick channel is activated by intracellular Na+ and Cl- and is inhibited by intracellular ATP. Slick is widely expressed in the CNS and is detected in heart. We identify a consensus ATP binding site near the C terminus of the channel that is required for ATP and its nonhydrolyzable analogs to reduce open probability. The convergence of Na+, Cl-, and ATP sensitivity in one channel may endow Slick with the ability to integrate multiple indicators of the metabolic state of a cell and to adjust electrical activity appropriately.


Assuntos
Trifosfato de Adenosina/farmacologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Sódio/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cloretos/farmacologia , Clonagem Molecular , Cricetinae , Condutividade Elétrica , Humanos , Ativação do Canal Iônico , Cinética , Dados de Sequência Molecular , Canais de Potássio Ativados por Sódio , Ratos , Alinhamento de Sequência , Distribuição Tecidual , Xenopus
12.
J Gen Physiol ; 124(2): 163-71, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277577

RESUMO

For structural studies it would be useful to constrain the voltage sensor of a voltage-gated channel in its deactivated state. Here we consider one Shaker potassium channel mutant and speculate about others that might allow the channel to remain deactivated at zero membrane potential. Ionic and gating currents of F370C Shaker, expressed in Xenopus oocytes, were recorded in patches with internal application of the methanethiosulfonate reagent MTSET. It appears that the voltage dependence of voltage sensor movement is strongly shifted by reaction with internal MTSET, such that the voltage sensors appear to remain deactivated even at positive potentials. A disadvantage of this construct is that the rate of modification of voltage sensors by MTSET is quite low, approximately 0.17 mM(-1).s(-1) at -80 mV, and is expected to be much lower at depolarized potentials.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Dados de Sequência Molecular , Mutação , Superfamília Shaker de Canais de Potássio , Xenopus
13.
Nat Commun ; 2: 399, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772270

RESUMO

The proton-activated sodium channel ASIC1 belongs to the ENaC/Degenerins family of ion channels. Little is known about gating of the pore in any member of this class. Here we outline the shape of the ion pathway of ASIC1 in the open and closed conformations by measuring apparent rates of cysteine modification by thiol-specific reagents in the two transmembrane helices that form the pore (TM1 and TM2). Closed channels have a narrowing in the external end of the pore, whereas open channels have a narrowing midway, the length of TM2 that serves as selectivity filter. Thus, gating of the pore entails straightening the tilt of TM2 without significant rotation. The findings imply that the external narrowing serves as opening, closing and desensitization gate, and that the selectivity filter of ASIC1 is a transient structure that assembles in the open state and is pulled apart in the closed state.


Assuntos
Lampreias/genética , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica , Prótons , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Cisteína/metabolismo , Eletrofisiologia , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Multimerização Proteica , Canais de Sódio/genética , Xenopus laevis
14.
J Gen Physiol ; 137(3): 289-97, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21357733

RESUMO

A constriction formed by the crossing of the second transmembrane domains of ASIC1, residues G432 to G436, forms the narrowest segment of the pore in the crystal structure of chicken ASIC1, presumably in the desensitized state, suggesting that it constitutes the "desensitization gate" and the "selectivity filter." Residues Gly-432 and Asp-433 occlude the pore, preventing the passage of ions from the extracellular side. Here, we examined the role of Asp-433 and Gly-432 in channel kinetics, ion selectivity, conductance, and Ca(2+) block in lamprey ASIC1 that is a channel with little intrinsic desensitization in the pH range of maximal activity, pH 7.0. The results show that the duration of open times depends on residue 433, with Asp supporting the longest openings followed by Glu, Gln, or Asn, whereas other residues keep the channel closed. This is consistent with residue Asp-433 forming the pore's closing gate and the properties of the side chain either stabilizing (hydrophobic amino acids) or destabilizing (Asp) the gate. The data also show residue 432 influencing the duration of openings, but here only Gly and Ala support long openings, whereas all other residues keep channels closed. The negative charge of Asp-433 was not required for block of the open pore by Ca(2+) or for determining ion selectivity and unitary conductance. We conclude that the conserved residue Asp-433 forms the closing gate of the pore and thereby determines the duration of individual openings while desensitization, defined as the permanent closure of all or a fraction of channels by the continual presence of H(+), modulates the on or off position of the closing gate. The latter effect depends on less conserved regions of the channel, such as TM1 and the extracellular domain. The constriction made by Asp-433 and Gly-432 does not select for ions in the open conformation, implying that the closing gate and selectivity filter are separate structural elements in the ion pathway of ASIC1. The results also predict a significantly different conformation of TM2 in the open state that relieves the constriction made by TM2, allowing the passage of ions unimpeded by the side chain of Asp-433.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Ácido Aspártico , Glicina , Concentração de Íons de Hidrogênio , Cinética , Lampreias , Potenciais da Membrana , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Mutação Puntual , Conformação Proteica , Canais de Sódio/química , Canais de Sódio/genética , Relação Estrutura-Atividade , Xenopus laevis
15.
Peptides ; 32(6): 1159-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21524672

RESUMO

A novel conotoxin, qc16a, was identified from the venom of vermivorous Conus quercinus. qc16a has only 11 amino acid residues, DCQPCGHNVCC, with a unique cysteine pattern. Its disulfide connectivity was determined to be I-IV, II-III. The NMR structure shows that qc16a adopts a ribbon conformation with a simple beta-turn motif formed by residues Gly6, His7 and Asn8. qc16a causes depression symptom in mice when injected intracranially. Point mutation results showed that Asp1, His7 and Asn8 are all essential for the activity of qc16a. Electrophysiologically, qc16a has no strong effect on the whole-cell currents of neurons and the currents of Drosophila Shaker channels, human BK channels and Na(V)1.7 channels. Its specific target still remains to be identified.


Assuntos
Encéfalo/efeitos dos fármacos , Conotoxinas/farmacologia , Caramujo Conus/química , Cisteína/química , Oócitos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Animais Peçonhentos/metabolismo , Animais Peçonhentos/fisiologia , Encéfalo/fisiologia , Conotoxinas/química , Conotoxinas/genética , Caramujo Conus/metabolismo , Cisteína/metabolismo , Depressão Química , Dissulfetos/química , Dissulfetos/metabolismo , Vias de Administração de Medicamentos , Eletrodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oócitos/fisiologia , Técnicas de Patch-Clamp , Mutação Puntual , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
J Neurosci Methods ; 192(2): 187-92, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20637803

RESUMO

We present the first, fully integrated, two-channel implementation of a patch-clamp measurement system. With this "PatchChip" two simultaneous whole-cell recordings can be obtained with rms noise of 8pA in a 10kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10pF and 100MΩ respectively under computer control. Recordings of hERG and Na(v) 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5µm silicon-on-sapphire process; its size is 3×3mm(2) and the power consumption is 5mW per channel with a 3.3V power supply.


Assuntos
Amplificadores Eletrônicos , Técnicas de Patch-Clamp/instrumentação , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia
17.
J Biol Chem ; 284(7): 4689-94, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19074149

RESUMO

Acid-sensing ion channels are proton-activated ion channels expressed in the nervous system. They belong to the family of ENaC/Degenerins whose members share a conserved structure but are activated by widely diverse stimuli. We show that interaction of two aromatic residues, Tyr-72, located immediately after the first transmembrane segment, and Trp-288, located at the tip of a loop of the extracellular domain directed toward the first transmembrane segment, is essential for proton activation of the acid-sensing ion channels. The subdomain containing Trp-288 is a module tethered to the rest of the extracellular domain by short linkers and intrasubunit interactions between residues in the putative "proton sensor." Mutations in these two areas shift the apparent affinity of protons toward a more acidic range and change the kinetics of activation and desensitization. These results are consisting with displacement of the module relative to the rest of the extracellular domain to allow interaction of Trp-288 with Tyr-72 during gating. We propose that such interaction may provide functional coupling between the extracellular domain and the pore domain.


Assuntos
Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Prótons , Canais de Sódio/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Sódio/genética , Triptofano/genética , Tirosina/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA