Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39106147

RESUMO

Brain-computer interfaces (BCIs) based on steady-state visually evoked potential (SSVEP) have a broad application prospect owing to their multiple command output and high performance. Each harmonic component of SSVEP individually contains unique features, which can be utilized to enhance the recognition performance of SSVEP-based BCIs. However, the existing subband analysis methods for SSVEP, including those based on filter banks and existing mode decomposition methods, have limitations in extracting and utilizing independent harmonic components. This study proposes a sinusoidal signal assisted multivariate variational mode decomposition (SA-MVMD) algorithm that allows the constraint of the center frequencies and narrowband filtering structures of the intrinsic mode functions (IMFs) based on the prior frequency knowledge of the signal. It preserves the target information of the signal during decomposition while avoiding mode mixing and incorrect decomposition, thereby enabling the effective extraction of each independent harmonic component of SSVEP. Building on this, a SA-MVMD based task-related component analysis (SA-MVMD-TRCA) method is further proposed to fully utilize the features within the overall SSVEP as well as its independent harmonics, thereby enhancing the recognition performance. Testing on the public SSVEP Benchmark dataset demonstrates that the proposed method significantly outperforms the filter bank-based control methods. This study confirms the effectiveness of SA-MVMD and the potential of this approach, which analyzes and utilizes each independent harmonic of SSVEP, providing new strategies and perspectives for performance enhancement in SSVEP-based BCIs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39106144

RESUMO

Eye tracking technology has become increasingly important in scientific research and practical applications. In the field of eye tracking research, analysis of eye movement data is crucial, particularly for classifying raw eye movement data into eye movement events. Current classification methods exhibit considerable variation in adaptability across different participants, and it is necessary to address the issues of class imbalance and data scarcity in eye movement classification. In the current study, we introduce a novel eye movement classification method based on cascade forest (EMCCF), which comprises two modules: (1) a feature extraction module that employs a multi-scale time window method to extract features from raw eye movement data; (2) a classification module that innovatively employs a layered ensemble architecture, integrating the cascade forest structure with ensemble learning principles, specifically for eye movement classification. Consequently, EMCCF not only enhanced the accuracy and efficiency of eye movement classification but also represents an advancement in applying ensemble learning techniques within this domain. Furthermore, experimental results indicated that EMCCF outperformed existing deep learning-based classification models in several metrics and demonstrated robust performance across different datasets and participants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA