Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114107

RESUMO

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Assuntos
Angelica , Fertilizantes , Rizosfera , Angelica/química , Fungos/genética , Fósforo
2.
Mol Med ; 28(1): 116, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104669

RESUMO

BACKGROUND: Cataracts are the leading cause of blindness and a common ocular complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) and altered autophagic activity occur during the development of diabetic cataracts. The disturbed interaction of autophagy with EMT in LECs stimulated by high glucose levels may participate in cataract formation. METHODS: A rat diabetic cataract model induced by streptozotocin (STZ) and human lens epithelial cells (HLE-B3) stimulated with a high glucose concentration were employed in the study. These models were treated with rapamycin (an inhibitor of mammalian target of rapamycin (mTOR)), and N-(N-[3,5-difluorophenacetyl]-1-alanyl)-S-phenylglycine t-butyl ester (DAPT, an inhibitor of γ-secretase) alone or in combination. Lens opacity was observed and photographed under a slit-lamp microscope. Histological changes in paraffin sections of lenses were detected under a light microscope after hematoxylin and eosin staining. Alterations of autophagosomes in LECs were counted and evaluated under a transmission electron microscope. The expression levels of proteins involved in the EMT, autophagy, and the signaling pathways in LECs were measured using Western blotting and immunofluorescence staining. Cell migration was determined by performing transwell and scratch wound assays. Coimmunoprecipitation (Co-IP) was performed to verify protein-protein interactions. Proteins were overexpressed in transfected cells to confirm their roles in the signaling pathways of interest. RESULTS: In LECs, a high glucose concentration induces the EMT by activating Jagged1/Notch1/Notch intracellular domain (NICD)/Snail signaling and inhibits autophagy through the AKT/mTOR/unc 51-like kinase 1 (ULK1) signaling pathway in vivo and in vitro, resulting in diabetic cataracts. Enhanced autophagic activity induced by rapamycin suppressed the EMT by inducing Notch1 degradation by SQSTM1/p62 and microtubule-associated protein light chain 3 (LC3) in LECs, while inhibition of the Notch signaling pathway with DAPT not only prevented the EMT but also activated autophagy by decreasing the levels of NICD, which bound to ULK1, phosphorylated it, and then inhibited the initiation of autophagy. CONCLUSIONS: We describe a new interaction of autophagy and the EMT involving NICD/ULK1 signaling, which mediates crosstalk between these two important events in the formation of diabetic cataracts. Activating autophagy and suppressing the EMT mutually promote each other, revealing a potential target and strategy for the prevention of diabetic cataracts.


Assuntos
Catarata , Diabetes Mellitus , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Catarata/etiologia , Transição Epitelial-Mesenquimal , Glucose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1831-1846, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534253

RESUMO

In recent years, the MYB-related gene family has been found pivotal in plant growth and development. MYB-related gene family in Angelica dahurica var. formosana was systematically investigated based on "Chuanzhi No. 2" through transcriptome database search and bioinformatics and the temporal and spatial expression patterns were analyzed through real-time fluorescence-based quantitative polymerase chain reaction(PCR). The results showed that 122 MYB-related proteins family were identified, mainly including the unstable hydrophilic proteins with good thermal stability. Most of the proteins were located in nuclei. The majority of the proteins had the structures of random coil and α-helix. Five MYB-related proteins family of A. dahurica var. formosana had membrane-binding domains. The conserved domain analysis of MYB-related proteins family of A. dahurica var. formosana showed that the MYB domains of genes in five subgroups, similar to 2 R-, 3 R-, and 4 R-MYB proteins, contained three evenly distributed Trp(W) residues in the MYB repeat sequence. The phylogenetic analysis of MYB-related proteins family in A. dahurica var. formosana and Arabidopsis thaliana showed that the MYB-related members were unevenly distributed in five subgroups, and A. thaliana and A. dahurica var. formosana had almost the same number of genes in the CCA1-like subgroup. There were differences in the number, type, and distribution of motifs contained in 122 encoded proteins. Transcription factors with similar branches had similar domains and motifs. The expression pattern analysis showed that the transcription factors AdMYB53, AdMYB83, and AdMYB89 responded to hormones to varying degrees, and they were highly expressed in leaves and responded quickly in roots. This study lays a foundation for further investigating the function of MYB-related transcription factors of A. dahurica var. formosana and solving the corresponding biological problems such as bolting early.


Assuntos
Angelica , Gastrópodes , Angelica/química , Animais , Biologia Computacional , Filogenia , Folhas de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética
4.
BMC Genomics ; 21(1): 794, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187479

RESUMO

BACKGROUND: Stevia rebaudiana (Bertoni) is considered one of the most valuable plants because of the steviol glycosides (SGs) that can be extracted from its leaves. Glycosyltransferases (GTs), which can transfer sugar moieties from activated sugar donors onto saccharide and nonsaccharide acceptors, are widely distributed in the genome of S. rebaudiana and play important roles in the synthesis of steviol glycosides. RESULTS: Six stevia genotypes with significantly different concentrations of SGs were obtained by induction through various mutagenic methods, and the contents of seven glycosides (stevioboside, Reb B, ST, Reb A, Reb F, Reb D and Reb M) in their leaves were considerably different. Then, NGS and single-molecule real-time (SMRT) sequencing were combined to analyse leaf tissue from these six different genotypes to generate a full-length transcriptome of S. rebaudiana. Two phylogenetic trees of glycosyltransferases (SrUGTs) were constructed by the neighbour-joining method and successfully predicted the functions of SrUGTs involved in SG biosynthesis. With further insight into glycosyltransferases (SrUGTs) involved in SG biosynthesis, the weighted gene co-expression network analysis (WGCNA) method was used to characterize the relationships between SrUGTs and SGs, and forty-four potential SrUGTs were finally obtained, including SrUGT85C2, SrUGT74G1, SrUGT76G1 and SrUGT91D2, which have already been reported to be involved in the glucosylation of steviol glycosides, illustrating the reliability of our results. CONCLUSION: Combined with the results obtained by previous studies and those of this work, we systematically characterized glycosyltransferases in S. rebaudiana and forty-four candidate SrUGTs involved in the glycosylation of steviol glucosides were obtained. Moreover, the full-length transcriptome obtained in this study will provide valuable support for further research investigating S. rebaudiana.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glicosiltransferases/genética , Filogenia , Folhas de Planta/genética , Reprodutibilidade dos Testes , Stevia/genética
5.
Immunol Cell Biol ; 98(2): 127-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811786

RESUMO

Sepsis is a complex inflammatory disorder in which high mortality is associated with an excessive inflammatory response. Inhibitor of growth 4 (ING4), which is a cofactor of histone acetyltransferase and histone deacetylase complexes, could negatively regulate this inflammation. However, the exact molecular signaling pathway regulated by ING4 remains uncertain. As a pivotal histone deacetylase, Sirtuin1 (SIRT1), which is widely accepted to be an anti-inflammatory molecule, has not been found to be linked to ING4. This study investigated how ING4 is involved in the regulation of inflammation by constructing lipopolysaccharide (LPS)-induced macrophage and mouse sepsis models. Our results revealed that ING4 expression decreased, whereas the levels of proinflammatory cytokines increased in LPS-stimulated cultured primary macrophages and RAW 264.7 cells. ING4 transfection was confirmed to alleviate the LPS-induced upregulation of proinflammatory cytokine expression both in vitro and in vivo. In addition, ING4-overexpressing mice were hyposensitive to an LPS challenge and displayed reduced organ injury. Furthermore, immunoprecipitation indicated a direct interaction between ING4 and the SIRT1 protein. Moreover, ING4 could block nuclear factor-kappa B (NF-κB) P65 nuclear translocation and restrict P65 acetylation at lysine 310 induced by LPS treatment. These results are the first to clarify that the anti-inflammatory role of ING4 is associated with SIRT1, through which ING4 inhibits NF-κB signaling activation. Our studies provide a novel signaling axis involving ING4/SIRT1/NF-κB in LPS-induced sepsis.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Sepse/metabolismo , Sirtuína 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Animais , Proteínas de Transporte/genética , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica , Células RAW 264.7 , Sepse/genética , Sepse/patologia , Transdução de Sinais/genética , Sirtuína 1/genética , Proteínas Supressoras de Tumor/genética , Regulação para Cima
6.
Ann Plast Surg ; 84(5): 525-528, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31609252

RESUMO

BACKGROUND: Reconstruction of distal foot defect remains a challenge in plastic surgery. The purpose of this report is to present a new procedure that repairs these defects in severe burn patients. Results of application and follow-up in 7 patients were presented. METHODS: From January 2016 to March 2018, a total of 7 patients (age ranging from 21 to 57 years) with distal foot defects were treated in our department. All the wounds were caused by severe burns and repaired by the free vascularized fascia lata combined with thin split-skin graft. After the operation, the status of the fascia flaps and grafted skin was observed, and follow-up information and complications were documented. RESULTS: Among the 7 patients, the flaps and grafted skins completely survived in 5 patients. One patient was found to have grafted skin necrosis in the perioperative period, and 1 patient was found to have partial flap necrosis in the follow-up period. After conventional dressing treatment and skin grafting, the wounds healed in both patients. The mean follow-up was 6 months. CONCLUSIONS: The method of combining the free vascularized fascia lata with thin split-skin graft represents a satisfactory approach for the repairing of distal foot defects.


Assuntos
Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Adulto , Fascia Lata , Humanos , Pessoa de Meia-Idade , Transplante de Pele , Lesões dos Tecidos Moles/cirurgia , Retalhos Cirúrgicos , Adulto Jovem
7.
J Cell Mol Med ; 23(9): 6164-6172, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270945

RESUMO

Hypertrophic scars (HS) are characterized by the excessive production and deposition of extracellular matrix (ECM) proteins. Pentoxifylline (PTX), a xanthine derived antioxidant, inhibits the proliferation, inflammation and ECM accumulation of HS. In this study, we aimed to explore the effect of PTX on HS and further clarify the mechanism of PTX-induced anti-proliferation. We found that PTX could significantly attenuate proliferation of HS fibroblasts and fibrosis in an animal HS model. PTX inhibited the proliferation of HSFs in a dose- and time-dependent manner, and this growth inhibition was mainly mediated by cell cycle arrest. Transcriptome sequencing showed that PTX affects HS formation through the PI3K/Akt/FoxO1 signalling pathway to activate p27Kip1 . PTX down-regulated p-Akt and up-regulated p-FoxO1 in TGF-ß1 stimulated fibroblasts at the protein level, and simultaneously, the expression of p27Kip1 was activated. In a mouse model of HS, PTX treatment resulted in the ordering of collagen fibres. The results revealed that PTX regulates TGFß1-induced fibroblast activation and inhibits excessive scar formation. Therefore, PTX is a promising agent for the treatment of HS formation.


Assuntos
Cicatriz Hipertrófica/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicatriz Hipertrófica/patologia , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Pentoxifilina/farmacologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Fator de Crescimento Transformador beta/genética
8.
J Cell Physiol ; 234(12): 22450-22462, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099043

RESUMO

The severity of sepsis is associated with excessive inflammatory responses. MCP-1 induced protein (MCPIP1) could negatively regulate inflammatory responses by deubiquitinating K48 or K63 polyubiquitins of TNF receptor-associated factors. The function of MCPIP1 in negative regulation of inflammation is known, however, only the exact molecular pathway remains unknown. The aim of this study was to investigate whether and how MCPIP1 is involved in the regulation of lipopolysaccharides (LPS)-induced liver injury. Macrophages and a mouse model were induced by LPS treatment. Several in vitro assays, such as quantitative real-time PCR, immunoblotting, cell transfection, dual luciferase reporter assay, Enzyme-linked immunosorbent assay, and Hematoxylin-Eosin staining assay were used to explore the role of MCPIP1 and the interaction between MCPIP1, Sirtuin 1 (SIRT1), and microRNA-9 (miR-9). We found that the level of MCPIP1 increased and the level of SIRT1 decreased in LPS induced Kupffer cells or RAW 264.7 macrophages. Overexpression of MCPIP1 alleviated cytokine secretion and p65 nuclear translocation. Further study showed that MCPIP1 regulated p65 nuclear translocation by controlling p65 acetylation via promoting SIRT1 expression. Meanwhile, we found that miR-9 could directly regulate SIRT1 transcription by binding to the 3'-Untranslated Region of SIRT1 messenger RNA and that miR-9 was negatively regulated by MCPIP1. Importantly, overexpression of MCPIP1 in vivo could alleviate LPS-induced inflammation responses and liver injury in septic mice. These results demonstrated that MCPIP1 could alleviate inflammation responses and sepsis associated liver injury by promoting the expression of SIRT1, and miR-9 was involved in the MCPIP1-mediated regulation of SIRT1. Collectively, our results provide a possible novel signaling axis involving MCPIP1/miR-9/SIRT1 in LPS-induced septic mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , Ribonucleases/metabolismo , Sirtuína 1/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células de Kupffer , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células RAW 264.7 , Sirtuína 1/genética
9.
J Cell Physiol ; 234(9): 16562-16572, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30811042

RESUMO

Liver injury plays vital roles in the development of inflammation and organ dysfunction during sepsis. MCP-1-induced protein 1 (MCPIP1), as an endoribonuclease, is a critical regulator for the maintenance of immune homeostasis. However, whether MCPIP1 participates in the septic liver injury remains unknown. The aim of this study was to investigate the role of MCPIP1 in lipopolysaccharides-induced liver injury and the underlying modulatory mechanisms. Quantitative real-time polymerase chain reaction and immunoblotting were used to determine proinflammatory cytokines, MCPIP1, retinoid-related orphan receptor α (RORα), miR-155, and related protein from nuclear factor-κB (NF-κB) pathway expression. Dual luciferase reporter assay was used to analyze whether miR-155 regulates RORα transcription. Secretion of inflammatory cytokines into sera in mice were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining, alanine aminotransferase, and aspartate transaminase, assay were used to evaluate liver function. We found that MCPIP1 expression was notably upregulated and significantly downregulated inflammatory cytokine secretion and NF-κB signaling activation in macrophages following exposure to lipopolysaccharide. Moreover, miR-155, lowered by MCPIP1, directly targeted on 3'-untranslated region of RORα to activate an inflammatory response. Importantly, MCPIP1 overexpression in mice alleviated septic liver injury symptoms following lipopolysaccharides stimulation. Collectively, these data highlight MCPIP1/miR-155/RORα axis as a novel modulation of inflammation in liver injury and potential therapeutic target for future research.

10.
Plant Cell Rep ; 38(9): 1031-1038, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31065780

RESUMO

Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Vírus de Plantas/fisiologia , Plantas/genética , RNA Interferente Pequeno/genética , Metilação de DNA , Epigenômica , Inativação Gênica , Doenças das Plantas/virologia , Plantas/imunologia , Plantas/virologia , Interferência de RNA
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(4): 627-631, 2017 08 25.
Artigo em Zh | MEDLINE | ID: mdl-29745563

RESUMO

The objective of the mock circulatory system (MCS) is to construct the characteristics of cardiovascular hemodynamics. Westerhof 's resistor that often regarded as the laminar flow resistance in the MCS, is commonly used to simulate the peripheral resistance of the cardiovascular system. However, the theoretical calculation value of fluid resistance of the Westerhof 's resistor shows distinguished difference with the actual needed value. If the theoretical resistance is regarded as the actual needed one and be used directly in the experiment, the experimental accuracy would not be acceptable. In order to improve the accuracy, an effective correction method for calculating the resistance of Westerhof 's resistor was proposed in this paper. Simulation software was also developed to compute accurately the capillary number, total length and resistance. The results demonstrate the proposed method is able to reduce the difficulty and complexity of the design of the resistor, which would obviously increase the manufactured precision of the Westerhof 's resistor. Simulation software would provide great support to the construction of various MCSs.

12.
Gene ; 927: 148730, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944165

RESUMO

Hypertrophic scar (HS) presents a significant clinical challenge, frequently arising as a fibrotic sequela of burn injuries and trauma. Characterized by the aberrant activation and proliferation of myofibroblasts, HS lacks a targeted therapeutic approach to effectively reduce this dysregulation. This study offers novel evidence of upregulated expression of CD248 in HS tissues compared to normal skin (NS) tissues. Specifically, the expression of CD248 was predominantly localized to α-SMA+-myofibroblasts in the dermis. To explain the functional role of CD248 in dermal myofibroblast activity, we employed a targeted anti-CD248 antibody, IgG78. Both CD248 intervention and IgG78 treatment effectively suppressed the proliferative, migratory, and ECM-synthesizing activities of myofibroblasts isolated from HS dermis. In addition, IgG78 administration significantly attenuated HS formation in an in vivo rabbit ear model. The LC/MS analysis coupled with co-immunoprecipitation of HS tissues indicated a direct interaction between CD248 and the ECM components Fibronectin (FN) and Collagen I (COL I). These findings collectively suggest that CD248 may function as a pro-fibrotic factor in HS development through its interaction with ECM constituents. The utilization of an anti-CD248 antibody, such as IgG78, represents a promising novel therapeutic strategy for the treatment of HS.

13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 878-883, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-37882710

RESUMO

Objective To investigate the role of proanthocyanidins (PC) in lipopolysaccharide (LPS)-induced inflammatory response and its possible mechanism in RAW264.7 macrophages. Methods RAW264.7 macrophages were cultured and treated with PBS and different concentrations of PC for 24 hours, followed by 1 µg/mL LPS for 6 hours. Real-time PCR was used to detect the mRNA expression of interleukin1ß (IL-1ß), IL-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrotic factor α (TNF-α), IL-4 and arginase 1 (Arg1) in RAW264.7 macrophages. Flow cytometry was used to detect the effects of PBS group, LPS group and PC combined with LPS group on M1 and M2 polarization of macrophages. The protein expressions of silenced information regulator 1 (SIRT1), nuclear factor kappa B p65(NF-κB p65) and acetylated NF-κB p65 (Ace-p65) were detected by Western blot analysis after different concentrations of PC treatment. Co-immunoprecipitation assay was used to detect the binding effect of SIRT1 to NF-κB p65 in macrophages treated with PC. Results Compared with PBS group, the mRNA expression of macrophage pro-inflammatory cytokines IL-1ß, IL-6, MCP-1 and TNF-α decreased and the mRNA expression of anti-inflammatory factors IL-4 and Arg1 increased in PC group. Compared with LPS group, PC combined with LPS group could significantly inhibit M1 polarization and promote M2 polarization of macrophages. With the increase of PC concentration, the expression of SIRT1 was up-regulated, and NF-κB p65 protein did not change significantly. The expression of Ace-p65 protein decreased significantly when treated with high concentration of PC. Conclusion PC can significantly alleviate the LPS-induced inflammatory response by up-regulating the expression of SIRT1 and inhibiting NF-κB pathway in RAW264.7 macrophages.


Assuntos
NF-kappa B , Proantocianidinas , Animais , Camundongos , Interleucina-4 , Interleucina-6 , Lipopolissacarídeos , Macrófagos , RNA Mensageiro , Sirtuína 1/genética , Fator de Necrose Tumoral alfa , Células RAW 264.7
14.
Front Bioeng Biotechnol ; 11: 1155052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034258

RESUMO

The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.

15.
PeerJ ; 11: e15997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692115

RESUMO

Background: Rhizosphere bacteria play important roles in plant growth and secondary metabolite accumulation. Moreover, only with favorable production areas and desirable germplasm can high-yield and high-quality medicinal materials be produced. However, whether origin and germplasm indirectly affect the yield and quality of Angelica dahurica var. formosana through rhizosphere bacterial effects are not known. Methods: In this study, a high-throughput sequencing strategy was used to explore the relationship between the rhizosphere bacterial community and the cultivation of A. dahurica var. formosana from different production areas and germplasm for the first time. Results: (1) Proteobacteria was the dominant bacterial phylum in the rhizosphere soil of A. dahurica var. formosana, and these bacteria were stable and conserved to a certain extent. (2) High abundance of Proteobacteria was an important rhizospheric indicator of high yield, and high abundance of Firmicutes was an important indicator of high quality. Proteobacteria and Firmicutes might have an important relationship with the yield and quality of A. dahurica var. formosana, respectively. (3) PCoA cluster analysis demonstrated that both production area and germplasm affected the bacterial community structure in the rhizosphere of A. dahurica var. formosana to a certain extent, and production area had the greatest effect. In addition to available potassium, the rhizosphere soil nutrient levels of different production areas strongly affected the bacterial diversity and community. These findings provide a theoretical basis for the exploitation and utilization of rhizosphere microbial resources of A. dahurica var. formosana and offer a novel approach for increasing the yield and quality of this crop.


Assuntos
Angelica , Gastrópodes , Animais , Rizosfera , Bactérias/genética , Proteobactérias/genética , Firmicutes , Solo
16.
Exp Biol Med (Maywood) ; 248(11): 922-935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211747

RESUMO

Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.


Assuntos
Sepse , Sirtuína 1 , Animais , Camundongos , Citocinas , Inflamação , Macrófagos , NF-kappa B , Proteínas Proto-Oncogênicas c-akt
17.
J Clin Transl Hepatol ; 11(4): 809-816, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408820

RESUMO

Background and Aims: Occlusive portal vein thrombosis (PVT) often causes portal hypertension-related complications in cirrhotic patients. Transjugular intrahepatic portosystemic shunt (TIPS) is an effective treatment for this difficult problem. However, the factors influencing TIPS success and overall survival in patients with occlusive PVT are unknown. This study investigated the factors influencing TIPS success and overall survival in cirrhotic patients with occlusive PVT. Methods: Cirrhotic patients with occlusive PVT were selected from a prospective database of consecutive patients treated with TIPS in Xijing Hospital between January 2015 and May 2021. Baseline characteristics, TIPS success rate, complications, and survival were collected, and the factors associated with the TIPS success rate and transplant-free survival were analyzed. Results: A total of 155 cirrhotic patients with occlusive PVT were enrolled. TIPS succeeded in 126 (81.29%) cases. The 1-year survival rate was 74%. Compared with those without, patients with portal fibrotic cord had a lower TIPS success rate (39.02% vs. 96.49%, p<0.001), shorter median overall survival (300 vs. 1,730 days, p<0.001) and more operation-related complications (12.20% vs. 1.75%, p<0.01). Logistic regression analysis found that portal fibrotic cord (odds ratio 0.024) was a risk factor for TIPS failure. Univariate and multivariate analysis showed that portal fibrotic cord was an independent predictor of death (hazard ratio 2.111; 95% CI: 1.094-4.071, p=0.026). Conclusions: Portal fibrotic cord increased the TIPS failure rate and is a risk factor for poor prognosis in cirrhotic patients.

18.
Burns Trauma ; 11: tkad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908562

RESUMO

Background: Non-healing wounds are an intractable problem of major clinical relevance. Evidence has shown that dermal papilla cells (DPCs) may regulate the wound-healing process by secreting extracellular vesicles (EVs). However, low isolation efficiency and restricted cell viability hinder the applications of DPC-EVs in wound healing. In this study, we aimed to develop novel 3D-DPC spheroids (tdDPCs) based on self-feeder 3D culture and to evaluate the roles of tdDPC-EVs in stimulating angiogenesis and skin wound healing. Methods: To address the current limitations of DPC-EVs, we previously developed a self-feeder 3D culture method to construct tdDPCs. DPCs and tdDPCs were identified using immunofluorescence staining and flow cytometry. Subsequently, we extracted EVs from the cells and compared the effects of DPC-EVs and tdDPC-EVs on human umbilical vein endothelial cells (HUVECs) in vitro using immunofluorescence staining, a scratch-wound assay and a Transwell assay. We simultaneously established a murine model of full-thickness skin injury and evaluated the effects of DPC-EVs and tdDPC-EVs on wound-healing efficiency in vivo using laser Doppler, as well as hematoxylin and eosin, Masson, CD31 and α-SMA staining. To elucidate the underlying mechanism, we conducted RNA sequencing (RNA-seq) of tdDPC-EV- and phosphate-buffered saline-treated HUVECs. To validate the RNA-seq data, we constructed knockdown and overexpression vectors of Krüppel-like factor 4 (KLF4). Western blotting, a scratch-wound assay, a Transwell assay and a tubule-formation test were performed to detect the protein expression, cell migration and lumen-formation ability of KLF4 and vascular endothelial growth factor A (VEGFA) in HUVECs incubated with tdDPC-EVs after KLF4 knockdown or overexpression. Dual-luciferase reporter gene assays were conducted to verify the activation effect of KLF4 on VEGFA. Results: We successfully cultured tdDPCs and extracted EVs from DPCs and tdDPCs. The tdDPC-EVs significantly promoted the proliferation, lumen formation and migration of HUVECs. Unlike DPC-EVs, tdDPC-EVs exhibited significant advantages in terms of promoting angiogenesis, accelerating wound healing and enhancing wound-healing efficiency both in vitro and in vivo. Bioinformatics analysis and further functional experiments verified that the tdDPC-EV-regulated KLF4/VEGFA axis is pivotal in accelerating wound healing. Conclusions: 3D cultivation can be utilized as an innovative optimization strategy to effectively develop DPC-derived EVs for the treatment of skin wounds. tdDPC-EVs significantly enhance wound healing via KLF4/VEGFA-driven angiogenesis.

19.
Front Immunol ; 13: 831168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359990

RESUMO

The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.


Assuntos
Sirtuína 1 , Sirtuínas , Histonas/metabolismo , Humanos , Inflamação/metabolismo , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
20.
Bioengineered ; 13(2): 4122-4136, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34898366

RESUMO

Infections of burn wounds, especially those caused by Pseudomonas aeruginosa, could trigger sepsis or septic shock, which is the main cause of death after burn injury. Compared with traditional saline-wet-to-dry dressings, negative pressure wound therapy (NPWT) is more effective for the prevention and treatment of wound infections. However, the mechanism by which NPWT controls infection and accelerates wound healing remains unclear. Accordingly, in this study, the molecular mechanisms underlying the effects of NPWT were explored using a murine model of P. aeruginosa-infected burn wounds. NPWT significantly reduced P. aeruginosa levels in wounds, enhanced blood flow, and promoted wound healing. Additionally, NPWT markedly alleviated wound inflammation and increased the expression of wound healing-related molecules. Recent evidence points to a role of circular RNAs (circRNAs) in wound healing; hence, whole-transcriptome sequencing of wound tissues from NPWT and control groups was performed to evaluate circRNA expression profiles. In total, 12 up-regulated and 25 down-regulated circRNAs were identified between groups. Among these, five significant differentially expressed circRNAs acting as microRNA sponges were identified, and their predicted targets were verified by reverse transcription-quantitative polymerase chain reaction. These results further support the roles of circRNAs in wound healing by NPWT and the prevention of P. aeruginosa infection, providing key molecular targets for further functional analyses.


Assuntos
Queimaduras/genética , Queimaduras/terapia , Tratamento de Ferimentos com Pressão Negativa , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/terapia , RNA Circular/genética , Animais , Queimaduras/metabolismo , Queimaduras/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , RNA Circular/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA