Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960600

RESUMO

The lock-in amplifier (LIA) is widely utilized to detect ultra-weak optical periodic signals based on the phase-sensitive and enhanced detecting theory. In this paper, we present an all-digital and universal embedded LIA platform that accurately and conveniently describes the spectrum generated by standard black bodies at various temperatures with different optical detectors. The proposed design significantly reduces the complexity and cost of traditional analog LIAs while maintaining accuracy. The LIA components are implemented using a single field programmable gate array (FPGA), offering flexibility to modify parameters for different situations. The normalized mean-square error (NMSE) of the captured spectra in the experiments is within 0.9% compared the theoretical values.

2.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897896

RESUMO

Chitin, the second richest polymer in nature, is composed of the monomer N-acetylglucosamine (GlcNAc), which has numerous functions and is widely applied in the medical, food, and chemical industries. However, due to the highly crystalline configuration and low accessibility in water of the chitin resources, such as shrimp and crab shells, the chitin is difficult utilize, and the traditional chemical method causes serious environment pollution and a waste of resources. In the present study, three genes encoding chitinolytic enzymes, including the N-acetylglucosaminidase from Ostrinia furnacalis (OfHex1), endo-chitinase from Trichoderma viride (TvChi1), and multifunctional chitinase from Chitinolyticbacter meiyuanensis (CmChi1), were expressed in the Pichia pastoris system, and the positive transformants with multiple copies were isolated by the PTVA (post-transformational vector amplification) method, respectively. The three recombinants OfHex1, TvChi1, and CmChi1 were induced by methanol and purified by the chitin affinity adsorption method. The purified recombinants OfHex1 and TvChi1 were characterized, and they were further used together for degrading chitin from shrimp and crab shells to produce GlcNAc through liquid-assisted grinding (LAG) under a water-less condition. The substrate chitin concentration reached up to 300 g/L, and the highest yield of the product GlcNAc reached up to 61.3 g/L using the mechano-enzymatic method. A yield rate of up to 102.2 g GlcNAc per 1 g enzyme was obtained.


Assuntos
Quitina , Quitinases , Acetilglucosamina/metabolismo , Animais , Quitina/química , Quitinases/química , Crustáceos/metabolismo , Água
3.
Appl Opt ; 60(25): 7523-7529, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613217

RESUMO

This paper describes an integrated, accurate, and inexpensive semiconductor laser -based optical frequency domain reflectometry (OFDR) system design. The system utilizes the fiber under test for both sensing and frequency sweep linearization functions, allowing the system to mitigate and compensate for phase errors without the need for an auxiliary interferometer, as is the case for traditional OFDR systems. Benefiting from the unique and embedded design, this system reaches the minimal OFDR system with only one optical interferometer and its corresponding optic-electric components without sacrificing accuracy. In addition, conventional design requires an external auxiliary interferometer, which may experience different noises from the main measuring interferometer, deteriorating the overall performance. Experimental results demonstrate the enhanced performance of the compact design as compared with the former methods, as well as the reduced complexity and improved cost-effectiveness.

4.
Opt Lett ; 45(21): 6086-6089, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137075

RESUMO

As the security of optical fiber lines in data centers has attracted growing attention, it has become increasingly important to accurately characterize the fiber that is used. Optical frequency domain reflectometry (OFDR) has been demonstrated as a means of identifying specific segments of optical fiber; however, OFDR measurements are limited in length due to initial optical frequency (IOF) variations. This Letter describes a detailed analysis of IOF and introduces a method to mitigate it in an OFDR system constructed using a semiconductor laser (SCL). Additionally, an algorithm is described that minimizes the calculating density necessary for OFDR-based optical fiber verification, reducing the calculating time required by an order of magnitude relative to prior techniques. Experiments demonstrate that the described method can be effectively applied to a range of application areas, ranging from centimeter to meter lengths of optical fiber, with an error equal rate (EER) of less than 1%.

5.
Appl Opt ; 58(23): 6211-6216, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31503761

RESUMO

This paper introduces an integrated fiber physical unclonable function (PUF) verification system based on a semiconductor laser source at substantially lower complexity and cost than existing alternatives. A source sub-section consisting of a linear frequency-swept semiconductor laser is used in combination with an optical frequency domain reflectometry (OFDR)/LiDAR-based measurement sub-section in order to conduct fiber identification via measurement of the unique Rayleigh reflection pattern of a section of optical fiber. When using these Rayleigh reflection patterns as PUFs, this technique results in a maximum equal error rate (EER) of 0.15% for a 5-cm section of optical fiber and an EER of less than 1% for a 4-cm section. These results demonstrate that the system can serve as a robust method fiber identification for device and communication verification applications.

6.
Rev Sci Instrum ; 89(8): 085005, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184625

RESUMO

Distributed optical fiber sensors are an increasingly utilized method of gathering distributed strain and temperature data. However, the large amount of data they generate presents a challenge that limits their use in real-time, in situ applications. This article describes a parallel and pipelined computing architecture that accelerates the signal-processing speed of sub-terahertz fiber sensor arrays, maintaining high spatial resolution while allowing for expanded use of real-time sensing and control applications. The computing architecture described was successfully implemented in a field programmable gate array chip. The signal processing for the entire array takes only 12 system clock cycles. In addition, this design removes the necessity of storing any raw or intermediate data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA