Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 119(9): 1771-1780, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086046

RESUMO

Mechanical forces between cells and their microenvironment critically regulate the asymmetric morphogenesis and physiological functions in vascular systems. Here, we investigated the asymmetric cell alignment and cellular forces simultaneously in micropatterned endothelial cell ring-shaped sheets and studied how the traction and intercellular forces are involved in the asymmetric vascular morphogenesis. Tuning the traction and intercellular forces using different topographic geometries of symmetric and asymmetric ring-shaped patterns regulated the vascular asymmetric morphogenesis in vitro. Moreover, pharmacologically suppressing the cell traction force and intercellular force disturbed the force-dependent asymmetric cell alignment. We further studied this phenomenon by modeling the vascular sheets with a mechanical force-propelled active particle model and confirmed that mechanical forces synergistically drive the asymmetric endothelial cell alignments in different tissue geometries. Further study using mouse diabetic aortic endothelial cells indicated that diseased endothelial cells exhibited abnormal cell alignments, traction, and intercellular forces, indicating the importance of mechanical forces in physiological vascular morphogenesis and functions. Overall, we have established a controllable micromechanical platform to study the force-dependent vascular asymmetric morphogenesis and thus provide a direct link between single-cell mechanical processes and collective behaviors in a multicellular environment.


Assuntos
Células Endoteliais , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Camundongos , Morfogênese , Estresse Mecânico
2.
J Biomed Mater Res A ; 112(6): 881-894, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38192169

RESUMO

Abdominal aortic aneurysms (AAAs) are localized, rupture-prone expansions of the abdominal aorta wall. In this condition, structural extracellular matrix (ECM) proteins of the aorta wall, elastic fibers and collagen fibers, that impart elasticity and stiffness respectively, are slowly degraded by overexpressed matrix metalloproteinases (MMPs) following an injury stimulus. We are seeking to deliver therapeutics to the AAA wall using polymer nanoparticles (NPs) that are capable of stimulating on-site matrix regeneration and repair. This study aimed to determine how NP shape and size impacts endocytosis and transmigration past the endothelial cell (EC) layer from circulation into the medial layer of the AAA wall. First, rod-shaped NPs were shown to be created based mechanical stretching of PLGA NPs while embedded in a PVA film with longer rod-shaped NPs created based of the degree in which the PVA films are stretched. Live/dead assay reveals that our PLGA NPs are safe and do not cause cell death. Immunofluorescence staining reveal cytokine activation causes endothelial dysfunction in ECs by increasing expression of inflammatory marker Integrin αVß3 and decreasing expression of adhesion protein vascular endothelial (VE)-cadherin. We showed this disruption enable greater EC uptake and translocation of NPs. Fluorescence studies demonstrate high endothelial transmigration and endocytosis with rod-shaped NPs in cytokine activated ECs compared to healthy control cells, arguing for the benefits of using higher aspect ratio (AR) NPs for accumulation at the aneurysm site. We also demonstrated that the mechanisms of NP transmigration across an activated EC layer depend on NP AR. These results show the potential of using shape as a modality for enhancing permeation of NPs into the aneurysm wall. These studies are also significance to understanding the mechanisms that are likely engaged by NPs for penetrating the endothelial lining of aneurysmal wall segments.


Assuntos
Aneurisma da Aorta Abdominal , Nanopartículas , Humanos , Nanopartículas/química , Aorta Abdominal , Células Endoteliais/metabolismo , Citocinas
3.
Front Cardiovasc Med ; 9: 879977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783852

RESUMO

The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM-cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA