Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Immunity ; 40(2): 187-98, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24485804

RESUMO

Recent epidemiological studies have identified interferon regulatory factor 8 (IRF8) as a susceptibility factor for multiple sclerosis (MS). However, how IRF8 influences the neuroinflammatory disease has remained unknown. By studying the role of IRF8 in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we found that Irf8(-/-) mice are resistant to EAE. Furthermore, expression of IRF8 in antigen-presenting cells (APCs, such as macrophages, dendritic cells, and microglia), but not in T cells, facilitated disease onset and progression through multiple pathways. IRF8 enhanced αvß8 integrin expression in APCs and activated TGF-ß signaling leading to T helper 17 (Th17) cell differentiation. IRF8 induced a cytokine milieu that favored growth and maintenance of Th1 and Th17 cells, by stimulating interleukin-12 (IL-12) and IL-23 production, but inhibiting IL-27 during EAE. Finally, IRF8 activated microglia and exacerbated neuroinflammation. Together, this work provides mechanistic bases by which IRF8 contributes to the pathogenesis of MS.


Assuntos
Inflamação/fisiopatologia , Integrinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética
2.
Amino Acids ; 48(11): 2491-2499, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27277187

RESUMO

Relatively larger scale peptide libraries immobilized on a gel-type solid support consisting of 24 natural and non-natural amino acids by the "split and combine method" have been constructed to find interacting molecules. The diversity was ca. 200 millions of hexapeptides with cysteinyl residues forming cyclotide. Selected beads after screening can be sequenced by the conventional Edman degradation, although several restrictions and the problems are known. To resolve these, a novel combinatorial method involving partial acid hydrolysis followed by liquid chromatography with on-line mass spectrometric analyses has been established. Problems were uncovered in an early stage of the process. Uncertain assignment caused by byproducts derived from a cystine residue and other materials could be resolved by optimal hydrolysis conditions and derivatization before mass spectrometric analysis. Discrimination between Leu and Ile could be performed using high energy collision induced dissociation in the high resolution MALDI-TOF-MS/MS. The present optimized protocol is useful for discovery of sequences of interacting molecules and a second library construction.


Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos/genética , Análise de Sequência de Proteína/métodos , Peptídeos Cíclicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
J Neurophysiol ; 114(2): 989-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108952

RESUMO

The transient receptor potential (TRP) channels are widely distributed in the central nervous system (CNS) and peripheral nervous system. We examined the effects of TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and allyl isothiocyanate) on respiratory rhythm generation in brainstem-spinal cord preparations from newborn rats [postnatal days 0-3 (P0-P3)] and in in situ-perfused preparations from juvenile rats (P11-P13). Preparations were superfused with modified Krebs solution at 25-26°C, and activity of inspiratory C4 ventral root (or phrenic nerve) was monitored. In the newborn rat, an in vitro preparation of cinnamaldehyde (0.5 mM) induced typically biphasic responses in C4 rate: an initial short increase and subsequent decrease, then a gradual recovery of rhythm during 15 min of bath application. After washout, the respiratory rhythm rate further increased, remaining 200% of control for >120 min, indicating long-lasting facilitation. Allyl isothiocyanate induced effects similar to those of cinnamaldehyde. The long-lasting facilitation of respiratory rhythm was partially antagonized by the TRPA1 antagonist HC-030031 (10 µM). We obtained similar long-lasting facilitation in an in situ-perfused reparation from P11-P13 rats. On the basis of results from transection experiments of the rostral medulla and whole-cell recordings from preinspiratory neurons in the parafacial respiratory group (pFRG), we suggest that the rostral medulla, including the pFRG, is important to the induction of long-lasting facilitation. A histochemical analysis demonstrated a wide distribution of TRPA1 channel-positive cells in the reticular formation of the medulla, including the pFRG. Our findings suggest that TRPA1 channel activation could induce long-lasting facilitation of respiratory rhythm and provide grounds for future study on the roles of TRPA1 channels in the CNS.


Assuntos
Acroleína/análogos & derivados , Tronco Encefálico/efeitos dos fármacos , Respiração/efeitos dos fármacos , Medicamentos para o Sistema Respiratório/farmacologia , Medula Espinal/efeitos dos fármacos , Canais de Cátion TRPC/agonistas , Acetanilidas/farmacologia , Acroleína/farmacologia , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Estado de Descerebração , Imuno-Histoquímica , Hibridização In Situ , Isotiocianatos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Periodicidade , Purinas/farmacologia , Ratos Wistar , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Técnicas de Cultura de Tecidos
4.
Biomed Chromatogr ; 27(11): 1520-3, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23813469

RESUMO

To achieve more efficient separation of intact proteins for proteomics applications, three columns of differing diameters (4.0, 4.6 and 6.0 mm internal diameter) were chosen for comparison and investigated to identify optimal conditions. The column with the largest diameter gave the largest peak capacity, showing the efficient separation of intact proteins, such as two protein standards, glutathione S-transferase and ß-lactoglobulin. On the other hand, a low-molecular-weight compound was separated effectively on the smaller diameter column, demonstrating that the separation mechanism seems to differ between high- and low-molecular-weight compounds. Finally, using the 6.0 mm i.d. column, 680 protein peaks were observed in mouse liver extracts, demonstrating that a wider diameter separation column is effective for intact protein separations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteínas/isolamento & purificação , Proteômica/métodos , Animais , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/análise
5.
Front Neurosci ; 17: 1234215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239832

RESUMO

To date, research on the role of the brainstem and spinal cord in motor behavior has relied on in vitro preparations of the neonatal rodent spinal cord, with or without the brainstem; their spatial and temporal scope are subject to technical limitations imposed by low oxygen tension in deep tissues. Therefore, we created an arterially perfused in situ preparation that allowed us to investigate functional interactions in the CNS from the neonatal to adult period. Decerebrated rodents were kept alive via total artificial cardiopulmonary bypass for extracorporeal circulation; the plasma oxygen and ion components needed for survival were supplied through the blood vessels. Interferon regulatory factor 8 (IRF8) is a transcription factor that promotes myeloid cell development and stimulates innate immune responses. In the brain, IRF8 is expressed only in microglia and directs the expression of many genes that serve microglial functions. Recent evidence indicates that IRF8 affects behavior and modulates Alzheimer's disease progression in a mouse model. However, whether this immune deficiency arising from the absence of IRF8 influences the development of the neuronal network in the spinal cord is unknown. We applied the above methodology to mice of all ages and electrophysiologically explored whether the absence of IRF8 influences the development of lumbar central pattern generator (CPG) networks. In mice of all ages, bilateral neuronal discharges by the normal CPG networks activated by the modulated sympathetic tone via descending pathways at high flow rates became organized into discharge episodes punctuated by periods of quiescence. Similar discharge episodes were generated by the adult CPG networks (≥P14 days) activated by drug application. However, discharge episodes elicited by activating the neonatal-juvenile CPG networks (

6.
Neuroscience ; 528: 89-101, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557948

RESUMO

Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 µM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 µM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 µM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.


Assuntos
Cálcio , Receptor PAR-1 , Animais , Ratos , Animais Recém-Nascidos , Ratos Wistar , Tronco Encefálico/fisiologia , Bulbo , Medula Espinal
7.
Neurosci Lett ; 771: 136421, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34968723

RESUMO

Astrocytes are thought to play a crucial role in providing structure to the spinal cord and maintaining efficient synaptic function and metabolism because their fine processes envelop the synapses of neurons and form many neuronal networks within the central nervous system (CNS). To investigate whether putative astrocytes and putative neurons distributed on the ventral horn play a role in the modulation of lumbar locomotor central pattern generator (CPG) networks, we used extracellular recording and optical imaging techniques and recorded the neural output from the left L5 ventral root and the calcium activity of putative astrocytes and neurons in the L5 ventral horn at the same time when activating an isolated L1-L5 spinal cord preparation from rats aged 0-2 days. Optical measurements detected cells that showed a fluorescence intensity change under all experimental conditions, namely, (1) 5-HT + NMDA, (2) TTX, and (3) TTX + Low K+. These cells were semiautomatically identified using an in-house MATLAB-based program, as putative astrocytes and neurons according to the cell classification, i.e., increased or decreased fluorescence intensity change (ΔF/F0), and subjective judgment based on their soma size. Coherence and its phase were calculated according to the calcium activity of the putative astrocytes and putative neurons, and neural output was calculated during fictive locomotion with in-house MATLAB-based programs. We found that the number of putative astrocytes activated by applying low K+ tends not to differ from that activated by applying the protease-activated receptor 1 (PAR1) selective agonist TFLLR-NH2 (TFLLR). Moreover, the calcium activity of several putative astrocytes and neurons synchronized with locomotor-like activity at a frequency range below 0.5 Hz and the time lag between peaks of cellular calcium activity and locomotor-like activity ranged from -1000 to + 1000 ms. These findings presumably indicates that these putative astrocytes and neurons in the left L5 ventral horn require -1000 to + 1000 ms to communicate with lumbar CPG networks and maintain efficient synaptic function and metabolism in activated lumbar CPG networks. This finding suggests the possibility that putative astrocytic and neuronal cells in the L5 ventral horn contribute to generating the rhythms and patterns of locomotor-like activity by activated CPG networks in the first to fifth lumbar spinal cord.


Assuntos
Células do Corno Anterior/metabolismo , Astrócitos/metabolismo , Sinalização do Cálcio , Geradores de Padrão Central/metabolismo , Locomoção , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/fisiologia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Geradores de Padrão Central/efeitos dos fármacos , Geradores de Padrão Central/fisiologia , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Potássio/metabolismo , Ratos , Ratos Wistar , Serotonina/metabolismo , Tetrodotoxina/farmacologia
8.
Sci Adv ; 8(12): eabm1444, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333571

RESUMO

As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.

9.
Front Physiol ; 12: 645904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841182

RESUMO

It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25-26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 µM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.

10.
Neurosci Res ; 155: 20-26, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31207260

RESUMO

Eugenol modulates neuronal activity through actions on voltage-gated ionic channels and/or transient receptor potential channels. We previously suggested that eugenol inhibited cellular (and/or network) mechanisms essential for the maintenance of the respiratory burst activity in a brainstem-spinal cord preparation from newborn rat (postnatal day 0-3). Study of the distinct effects of eugenol in neonatal and later developmental stage rats may offer new information about postnatal developmental changes of respiratory neuron networks. In the present study, therefore, we compared effects of eugenol in an in vitro newborn rat preparation with those in an arterially perfused in situ preparation from juvenile rat (postnatal day 12-15). In the former preparation, application of 1 mM eugenol decreased respiratory rate and inspiratory burst duration. In contrast, in the latter preparation, 1 mM eugenol induced a gradual decrease in the amplitude of integrated phrenic nerve activity. Phrenic nerve activity gradually recovered at 25-30 min after washout with a burst duration similar to control values. We hypothesized that the depressant effects of eugenol were caused by inhibition of cell excitability in the neonatal rat in vitro preparation but by a reduction of synaptic interactions in the juvenile rat in situ preparation.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Eugenol/farmacologia , Bulbo/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Periodicidade , Nervo Frênico/fisiologia , Medula Espinal/fisiologia
11.
Sci Rep ; 10(1): 13325, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770006

RESUMO

Psychological stress activates the hypothalamus, augments the sympathetic nervous output, and elevates blood pressure via excitation of the ventral medullary cardiovascular regions. However, anatomical and functional connectivity from the hypothalamus to the ventral medullary cardiovascular regions has not been fully elucidated. We investigated this issue by tract-tracing and functional imaging in rats. Retrograde tracing revealed the rostral ventrolateral medulla was innervated by neurons in the ipsilateral dorsomedial hypothalamus (DMH). Anterograde tracing showed DMH neurons projected to the ventral medullary cardiovascular regions with axon terminals in contiguity with tyrosine hydroxylase-immunoreactive neurons. By voltage-sensitive dye imaging, dynamics of ventral medullary activation evoked by electrical stimulation of the DMH were analyzed in the diencephalon-lower brainstem-spinal cord preparation of rats. Although the activation of the ventral medulla induced by single pulse stimulation of the DMH was brief, tetanic stimulation caused activation of the DMH sustained into the post-stimulus phase, resulting in delayed recovery. We suggest that prolonged excitation of the DMH, which is triggered by tetanic electrical stimulation and could also be triggered by psychological stress in a real life, induces further prolonged excitation of the medullary cardiovascular networks, and could contribute to the pathological elevation of blood pressure. The connectivity from the DMH to the medullary cardiovascular networks serves as a chronological amplifier of stress-induced sympathetic excitation. This notion will be the anatomical and pathophysiological basis to understand the mechanisms of stress-induced sustained augmentation of sympathetic activity.


Assuntos
Vias Autônomas/fisiologia , Núcleo Hipotalâmico Dorsomedial/fisiologia , Bulbo/fisiologia , Neurônios/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Vias Autônomas/anatomia & histologia , Núcleo Hipotalâmico Dorsomedial/anatomia & histologia , Masculino , Bulbo/anatomia & histologia , Neurônios/citologia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/anatomia & histologia
12.
Transl Neurosci ; 6(1): 87-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28123792

RESUMO

The interplay of neural discharge patterns involved in "respiration", "circulation", "opening movements in the mandible", and "locomotion" was investigated electrophysiologically in a decerebrate and arterially perfused in situ rat preparation. Sympathetic tone increased with increases in perfusion flow rate. All nerve discharges became clearly organized into discharge episodes of increasing frequency and duration punctuated by quiescent periods as the perfusion flow rate increased at 26°C. The modulated sympathetic tone at 10× total blood volume/ min activated the forelimb pattern generator and spontaneously generated fictive forelimb movement during discharge episodes. The coupling rhythm of respiration and locomotion during motion occurred at frequency ratios ranges of 1:2 and 1:3. Small increases in systemic pressure were always generated after the initiation of motion. Opening movements in the mandible, occurring during the inspiratory phase at all tested flow rates, were generated in both the inspiratory and expiratory phases during motion. Although the central mechanism for the entrainment of respiratory and locomotor rhythms has not been identified, a spinal-feedback mechanism generating fictive locomotion in the upper spinal cord contributed to generating the opening movement in the mandible in the expiratory phase during motion. The existence of this mechanism implies that there is a reciprocal functional interaction between the brainstem and the spinal cord, whereby the intake and output of air by the lungs is efficiently improved during movement by both nasal and mouth breathing. These results suggest that this reciprocal functional interaction plays an important role in increasing oxygenated blood flow during locomotion.

13.
Front Neurosci ; 8: 124, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24910591

RESUMO

The interplay of the neuronal discharge patterns regarding respiration and locomotion was investigated using electrophysiological techniques in a decerebrate and arterially perfused in situ mouse preparation. The phrenic, tibial, and/or peroneal nerve discharge became clearly organized into discharge episodes of increasing frequency and duration, punctuated by periods of quiescence as the perfusion flow rate increased at room temperature. The modulated sympathetic tone induced by the hyperoxic/normocapnic state was found to activate the locomotor pattern generator (LPG) via descending pathways and generate a left and right alternating discharge during discharge episodes in the motor nerves. The rhythm coupling of respiration and locomotion occurred at a 1:1 frequency ratio. Although the phrenic discharge synchronized with the tibial discharge at all flow rates tested, the time lag between peaks of the two discharges during locomotion was ≈400 ms rather than ≈200 ms, suggesting spinal feedback via ascending pathways. The incidence of the phrenic and tibial discharge episodes decreased by ≈50% after spinalization at the twelfth thoracic cord and the respiratory rhythm was more regular. These results indicate that: (i) locomotion can be generated in a hyperoxic/normocapnic state induced by specific respiratory conditions, (ii) the central mechanism regarding entrainment of respiratory and locomotor rhythms relies on spinal feedback via ascending pathways, initiated by the activated LPG generating locomotion, and (iii) the increase in respiratory rate seen during locomotion is caused not only by afferent mechanical and nociceptive inputs but also by impulses from the activated spinal cord producing a locomotor-like discharge via ascending pathways.

14.
J Chromatogr A ; 1218(22): 3447-52, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21511262

RESUMO

A wide-pore (30 nm) reversed-phase column (Intrada WP-RP, particle size 3 µm) was recently utilized for protein separation in differential proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS), and exerted a tremendous effect on finding biomarkers (e.g., for breast cancer). Further high-performance separation is required for highly complex protein mixtures. A recently prepared non-porous small-particle reversed-phase column (Presto FF-C18, particle size: 2 µm) was expected to more effectively separate derivatized protein mixtures than the wide-pore column. A preliminary experiment demonstrated that the peak capacity of the former was threefold greater than that of the latter in gradient elution of a fluorogenic derivatized model peptide, calcitonin. The FD-LC-MS/MS method with a non-porous column was then optimized and applied to separate liver mitochondrial proteins that were not efficiently separated with the wide-pore column. As a result, high-performance separation of mitochondrial proteins was accomplished, and differential proteomics analysis of liver mitochondrial proteins in a hepatitis-infected mouse model was achieved using the FD-LC-MS/MS method with the non-porous column. This result suggests the non-porous small-particle column as a replacement for the wide-pore column for differential proteomics analysis in the FD-LC-MS/MS method.


Assuntos
Cromatografia de Fase Reversa/métodos , Cisteína/química , Corantes Fluorescentes/química , Proteínas Mitocondriais/isolamento & purificação , Proteômica/métodos , Animais , Hepatite/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/química , Oxidiazóis/química , Porosidade , Sulfonamidas/química , Espectrometria de Massas em Tandem
15.
Neuroimage ; 18(3): 622-32, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667839

RESUMO

We examined the spatiotemporal patterns of spontaneous epileptiform activity observed in the in vivo rat cerebral cortex using an optical recording technique of detecting transmembrane voltage changes. The surface of the cerebral cortex was exposed under anesthesia and stained with a fluorescent voltage-sensitive dye, RH414. Acute spontaneous epileptiform discharges were induced by application of a GABA(A) receptor antagonist, bicuculline. Changes in the intensity of fluorescence were recorded from the cerebral cortex using a 464-channel optic fiber photodiode system. We succeeded in recording spontaneous epileptiform discharges, and constructed their initiation-site maps. We found that the initiation site was neither unique nor randomly located, but exhibited a multimodal distribution pattern. The incidence of epileptiform discharges was different between the initiation sites, and some sites showed dominance in the induction of spontaneous epileptiform discharges.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Diagnóstico por Imagem/instrumentação , Eletroencefalografia/instrumentação , Epilepsia/fisiopatologia , Interpretação de Imagem Assistida por Computador/instrumentação , Animais , Bicuculina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Epilepsia/induzido quimicamente , Corantes Fluorescentes , Antagonistas de Receptores de GABA-A , Masculino , Potenciais da Membrana/fisiologia , Compostos de Piridínio , Ratos , Ratos Wistar
16.
J Neurophysiol ; 88(1): 383-93, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12091562

RESUMO

We investigated the functional organization of the glossopharyngeal and vagal motor nuclei during embryogenesis using multiple-site optical recording with a fast voltage-sensitive dye. Intact brain stem preparations with glossopharyngeal and vagus nerves were dissected from 4- to 8-day-old chick embryos. Electrical responses evoked by glossopharyngeal/vagus nerve stimulation were optically recorded from many loci of the stained preparations. In 4- to 6-day-old preparations, action potential-related fast spikelike signals were detected from the nucleus of the glossopharyngeal nerve and the dorsal motor nucleus of the vagus nerve. Contour line maps of the signal amplitude showed multiple-peak patterns, suggesting that the neurons and/or their activity were not uniformly distributed within the nuclei at early developmental stages. As development proceeded from 4 to 6 days, the peaks fused with each other and the number of peaks decreased gradually. In most 7- and 8-day-old preparations, only a single peak was identified in the nuclei, and the distribution of the signal amplitude formed a layered pattern surrounding the peak-signal area. These results suggest that functional organization of the motor nuclei in the embryonic hindbrain changes dynamically with development, resulting in a rearrangement of functional nuclear cores from multiple-peaks to a single peak.


Assuntos
Embrião de Galinha/fisiologia , Nervo Glossofaríngeo/embriologia , Rombencéfalo/embriologia , Nervo Vago/embriologia , Animais , Embrião de Galinha/citologia , Estimulação Elétrica , Eletrofisiologia , Técnicas In Vitro , Microscopia de Fluorescência , Óptica e Fotônica , Fatores de Tempo
17.
Neuroimage ; 17(3): 1240-55, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12414264

RESUMO

We examined neural response patterns evoked by peripheral nerve stimulation in in vivo rat spinal cords using an intrinsic optical imaging technique to monitor neural activity. Adult rats were anesthetized by urethane, and laminectomy was performed between C5 and Th1 to expose the dorsal surface of the cervical spinal cord. The median, ulnar, and radial nerves were dissected, and bipolar electrodes were implanted in the forelimb. Changes in optical reflectance were recorded from the dorsal cervical spinal cord in response to simultaneous stimulation of the median and ulnar nerves using a differential video acquisition system. In the region of the cervical spinal cord, intrinsic optical signals were detected between C5 and Th1 at wavelengths of 605, 630, 730, 750, and 850 nm: the image with the largest signal intensity and highest contrast was obtained at 605 nm. The signal intensity and response area expanded with an increase in the stimulation intensity and varied with the depth of the focal plane of the macroscope. The intrinsic optical response was mostly eliminated by Cd(2+), suggesting that the detected signals were mainly mediated by postsynaptic mechanisms activated by sensory nerve fibers. Furthermore, we succeeded in imaging neural activity evoked by individual peripheral nerve stimulation. We found that the response areas related to each peripheral nerve exhibited different spatial distribution patterns and that there were animal-to-animal variations in the evoked neural responses in the spinal cord. The results obtained in this study confirmed that intrinsic optical imaging is a very useful technique for acquiring fine functional maps of the in vivo spinal cord.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Microscopia de Vídeo/instrumentação , Nervos Periféricos/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Estimulação Elétrica , Desenho de Equipamento , Potenciais Evocados/fisiologia , Masculino , Ratos , Ratos Wistar , Sensibilidade e Especificidade
18.
Cereb Cortex ; 12(3): 269-80, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11839601

RESUMO

We performed intrinsic optical imaging of neuronal activity induced by peripheral stimulation from the human primary somatosensory cortex during brain tumor surgery for 11 patients. After craniotomy and dura reflection, the cortical surface was illuminated with a xenon light through an operating microscope. The reflected light passed through a bandpass filter, and we acquired functional images using an intrinsic optical imaging system. Electrical stimulation of the median nerve, or the first and fifth digits, induced biphasic intrinsic optical signals which consisted of a decrease in light reflectance followed by an increase. The decrease in light reflectance was imaged, and we identified a neural response area within the crown of the postcentral gyrus. In experiments on first and fifth digit stimulation, we identified optical responses in separated areas within the crown of the postcentral gyrus, i.e. near the central sulcus and near the postcentral sulcus. In the former response area, separate representations of the two fingers were observed, whereas in the latter response area, the two fingers were represented in the same region. A similar somatotopic representation was observed with electrical stimulation of the first and third branches of the trigeminal nerve. These results seem to support the hypothesis of hierarchical organization in the human primary somatosensory cortex.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Nervo Trigêmeo/fisiologia , Adulto , Idoso , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Dedos/inervação , Humanos , Masculino , Nervo Mediano/citologia , Nervo Mediano/fisiologia , Pessoa de Meia-Idade , Vias Neurais , Óptica e Fotônica/instrumentação , Córtex Somatossensorial/citologia , Nervo Trigêmeo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA