Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 103(6): 1289-1299, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940693

RESUMO

In animals, spermatogonial transplantation in sterile adult males is widely developed; however, despite its utility, ovarian germ cell transplantation is not well developed. We previously showed that the interspecific hybrid offspring of sciaenid was a suitable model for germ cell transplantation studies as they have germ cell-less gonads. However, all these gonads have testis-like characteristics. Here, we tested whether triploidization in hybrid embryos could result in germ cell-less ovary development. Gonadal structure dimorphism and sex-specific gene expression patterns were examined in 6-month-old triploid hybrids (3nHybs). Thirty-one percent of 3nHybs had germ cell-less gonads with an ovarian cavity. cyp19a1a and foxl2, ovarian differentiation-related genes, were expressed in these gonads, whereas dmrt1 and vasa were not expressed, suggesting ovary-like germ cell-less gonad development. Some (26%) 3nHybs had testis-like germ cell-less gonads. Ovarian germ cells collected from homozygous green fluorescent protein (GFP) transgenic blue drum (BD) (Nibea mitsukurii) were transplanted into 6-month-old 3nHybs gonads via the urogenital papilla or oviduct. After 9 months, the recipients were crossed with wild type BD. Among the six 3nHyb recipients that survived, one female and one male produced fertile eggs and motile sperm carrying gfp-specific DNA sequences. Progeny tests revealed that all F1 offspring possessed gfp-specific DNA sequences, suggesting that these recipients produced only donor-derived eggs or sperm. Histological observation confirmed donor-derived gametogenesis in the 3nHyb recipients' gonads. Overall, triploidization reduces male-biased sex differentiation in germ cell-less gonads. We report, for the first time, donor-derived egg production in an animal via direct ovarian germ cell transplantation into a germ cell-less ovary.


Assuntos
Peixes/genética , Peixes/fisiologia , Células Germinativas/transplante , Gônadas/citologia , Triploidia , Animais , Animais Geneticamente Modificados , Aromatase/genética , Aromatase/metabolismo , Temperatura Baixa , RNA Helicases DEAD-box , Embrião não Mamífero , Feminino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Regulação da Expressão Gênica , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Gen Comp Endocrinol ; 295: 113525, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502497

RESUMO

We aim to establish a small-bodied surrogate broodstock, such as mackerel, which produces functional bluefin tuna gametes by spermatogonial transplantation. When reproductively fertile fish are used as recipients, endogenous gametogenesis outcompetes donor-derived gametogenesis, and recipient fish predominantly produce their gametes. In this study, we assessed fertility of hybrid mackerel, Scomber australasicus × S. japonicus, and its suitability as a recipient for transplantation of bluefin tuna germ cells. Hybrid mackerel were produced by artificially inseminating S. australasicus eggs with S. japonicus spermatozoa. Cellular DNA content and PCR analyses revealed that F1 offspring were diploid carrying both paternal and maternal genomes. Surprisingly, histological observations found no germ cells in hybrid mackerel gonads at 120 days post-hatch (dph), although they were present in the gonad of 30- and 60-dph hybrid mackerel. The frequency of germ cell-less fish was 100% at 120-dph, 63.1% at 1-year-old, and 81.8% at 2-year-old. We also confirmed a lack of expression of germ cell marker (DEAD-box helicase 4, ddx4) in the germ cell-less gonads of hybrid mackerel. By contrast, expression of Sertoli cell marker (gonadal soma-derived growth factor, gsdf) and of Leydig cell marker (steroid 11-beta-hydroxlase, cyp11b1) were clearly detected in hybrid mackerel gonads. Together these results showed that most of the hybrid gonads were germ cell-less sterile, but still possessed supporting cells and steroidogenic cells, both of which are indispensable for nursing donor-derived germ cells. To determine whether hybrid gonads could attract and incorporate donor bluefin tuna germ cells, testicular cells labeled with PKH26 fluorescent dye were intraperitoneally transplanted. Fluorescence observation of hybrid recipients at 14 days post-transplantation revealed that donor cells had been incorporated into the recipient's gonads. This suggests that hybrid mackerel show significant promise for use as a recipient to produce bluefin tuna gametes.


Assuntos
Cruzamentos Genéticos , Células Germinativas/citologia , Células Germinativas/transplante , Gônadas/metabolismo , Hibridização Genética , Infertilidade/genética , Atum/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Reprodução , Testículo/citologia , Testículo/metabolismo , Testículo/transplante
3.
Biol Reprod ; 100(6): 1637-1647, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30934056

RESUMO

During our previous work toward establishing surrogate broodstock that can produce donor-derived gametes by germ cell transplantation, we found that only type A spermatogonia (ASGs) have the potency to colonize recipient gonads. Therefore, the ability to visualize ASGs specifically would allow the sequential analysis of donor cell behavior in the recipient gonads. Here we produced monoclonal antibodies that could recognize the cell surface antigens of ASGs in Pacific bluefin tuna (Thunnus orientalis), with the aim of visualizing live ASGs. We generated monoclonal antibodies by inoculating Pacific bluefin tuna testicular cells containing ASGs into mice and then screened them using cell-based enzyme-linked immunosorbent assay (ELISA), immunocytochemistry, flow cytometry (FCM), and immunohistochemistry, which resulted in the selection of two antibodies (Nos. 152 and 180) from a pool of 1152 antibodies. We directly labeled these antibodies with fluorescent dye, which allowed ASG-like cells to be visualized in a one-step procedure using immunocytochemistry. Molecular marker analyses against the FCM-sorted fluorescent cells confirmed that ASGs were highly enriched in the antibody-positive fraction. To evaluate the migratory capability of the ASGs, we transplanted visualized cells into the peritoneal cavity of nibe croaker (Nibea mitsukurii) larvae. This resulted in incorporated fluorescent cells labeled with antibody No. 152 being detected in the recipient gonads, suggesting that the visualized ASGs possessed migratory and incorporation capabilities. Thus, the donor germ cell visualization method that was developed in this study will facilitate and simplify Pacific bluefin tuna germ cell transplantation.


Assuntos
Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Espermatogônias/citologia , Espermatogônias/ultraestrutura , Coloração e Rotulagem/métodos , Atum , Animais , Anticorpos Monoclonais/metabolismo , Antígenos de Superfície/imunologia , Aquicultura , Rastreamento de Células/métodos , Rastreamento de Células/veterinária , Citometria de Fluxo/métodos , Citometria de Fluxo/veterinária , Corantes Fluorescentes/metabolismo , Imuno-Histoquímica/veterinária , Masculino , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/veterinária , Especificidade de Órgãos , Perciformes , Análise do Sêmen/métodos , Análise do Sêmen/veterinária , Espermatogônias/classificação , Espermatogônias/transplante , Coloração e Rotulagem/veterinária
4.
Biol Reprod ; 101(2): 492-500, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132090

RESUMO

An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/-) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfp-positive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfp-positive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/-) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.


Assuntos
Peixes/genética , Hibridização Genética , Espermatogônias/transplante , Espermatozoides/fisiologia , Animais , Transplante de Células , Peixes/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Sêmen/citologia
5.
Reprod Fertil Dev ; 28(12): 2051-2064, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195109

RESUMO

Germ cell transplantation is an innovative technology for the production of interspecies surrogates, capable of facilitating easier and more economical management of large-bodied broodstock, such as the bluefin tuna. The present study explored the suitability of yellowtail kingfish (Seriola lalandi) as a surrogate host for transplanted southern bluefin tuna (Thunnus maccoyii) spermatogonial cells to produce tuna donor-derived gametes upon sexual maturity. Germ cell populations in testes of donor T. maccoyii males were described using basic histology and the molecular markers vasa and dead-end genes. The peripheral area of the testis was found to contain the highest proportions of dead-end-expressing transplantable Type A spermatogonia. T. maccoyii Type A spermatogonia-enriched preparations were transplanted into the coelomic cavity of 6-10-day-old post-hatch S. lalandi larvae. Fluorescence microscopy and polymerase chain reaction analysis detected the presence of tuna cells in the gonads of the transplanted kingfish fingerlings at 18, 28, 39 and 75 days after transplantation, indicating that the transplanted cells migrated to the genital ridge and had colonised the developing gonad. T. maccoyii germ cell-derived DNA or RNA was not detected at later stages, suggesting that the donor cells were not maintained in the hosts' gonads.


Assuntos
Animais Geneticamente Modificados , Peixes/fisiologia , Reprodução , Espermatogônias/transplante , Atum , Animais , Gônadas , Masculino , Testículo
6.
Fish Physiol Biochem ; 42(6): 1621-1636, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27406385

RESUMO

The vasa gene is specifically expressed in the germ cell lineage, and its expression has been used to study germline development in many organisms, including fishes. In this study, we cloned and characterized vasa as Efu-vasa in the brown-marbled grouper (Epinephelus fuscoguttatus). Efu-vasa contained predicted regions that shared consensus motifs with the vasa family in teleosts, including arginine- and glycine-rich repeats, ATPase motifs, and a DEAD box. Phylogenetic-tree construction using various DEAD-box proteins confirmed that Efu-vasa was clustered in the vasa family. Efu-vasa mRNA was detectable only in gonads, by reverse transcription polymerase chain reaction. Primordial germ cells (PGCs) during early gonad development in larvae were characterized by histological examination and in situ hybridization using an Efu-vasa antisense probe. Migrating PGCs were found in larvae at 9-21 days post-hatching, and rapid proliferation of PGCs was initiated in 36 days post-hatching. These findings provide a valuable basis for optimizing the developmental stages for germ cell transplantation in order to produce surrogate broodstock, which may help in the production of larvae of large and endangered grouper species.


Assuntos
RNA Helicases DEAD-box/genética , Proteínas de Peixes/genética , Perciformes , Sequência de Aminoácidos , Animais , Sequência de Bases , Movimento Celular , Clonagem Molecular , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Ovário/citologia , Ovário/metabolismo , Perciformes/genética , Perciformes/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/metabolismo , Testículo/citologia , Testículo/metabolismo
7.
BMC Genomics ; 15: 200, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628956

RESUMO

BACKGROUND: Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. RESULTS: In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. CONCLUSIONS: Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/fisiopatologia , Doenças dos Peixes/fisiopatologia , Interações Hospedeiro-Parasita/genética , Oncorhynchus keta/genética , Salmo salar/genética , Salmão/genética , Animais , Peso Corporal , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Ectoparasitoses/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hematócrito , Hidrocortisona/sangue , Rim/metabolismo , Pele/metabolismo , Pele/parasitologia , Transcriptoma
8.
Mar Biotechnol (NY) ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691270

RESUMO

The use of sterile recipients is crucial for efficiently producing donor-derived offspring through surrogate broodstock technology for practical aquaculture applications. Although knockout (KO) of the dead end (dnd) gene has been used in previous studies as a sterilization method, it has not been reported in marine fish. In this study, nibe croaker was utilized as a model for marine teleosts that produce small pelagic eggs, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized to produce dnd KO fish. The F1 generation, which carried a nonsense mutation in the dnd gene, was produced by mating founder individuals with wild-type counterparts. Subsequently, the F2 generation was produced by mating the resulting males and females. Among the F2 generations, 24.0% consisted of homozygous KO individuals. Histological analysis revealed that primordial germ cells (PGCs) were present in homozygous KO individuals at 10 days post-hatching (dph), similar to wild-type individuals. However, by 20 dph, PGCs were absent in KO individuals. Furthermore, no germ cells were observed in the gonads of both sexes of homozygous KO individuals at 6 months old, which is the typical maturity age for wild-type individuals of both sexes. In addition, when cryopreserved donor nibe croaker testicular cells were transplanted, only donor-derived offspring were successfully obtained through the spontaneous mating of homozygous KO recipient parents. Results indicate that dnd KO nibe croaker lacks germ cells and can serve as promising recipients, producing only donor-derived gametes as surrogate broodstock.

9.
Mol Reprod Dev ; 80(10): 871-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913406

RESUMO

We developed a spermatogonial transplantation technique to produce donor-derived gametes in surrogate fish. Our ultimate aim is to establish surrogate broodstock that can produce bluefin tuna. We previously determined that only type A spermatogonia (ASG) could colonize recipient gonads in salmonids. Therefore, it is necessary to develop a precise molecular marker that can distinguish ASG in order to develop efficient spermatogonial transplantation methods. In this study, the Pacific bluefin tuna (Thunnus orientalis) dead end (BFTdnd) gene was identified as a specific marker for ASG. In situ hybridization and RT-PCR analysis with various types of spermatogenic cell populations captured by laser microdissection revealed that localization of BFTdnd mRNA was restricted to ASG, and not detected in other differentiated spermatogenic cells. In order to determine if BFTdnd can be used as a molecular marker to identify germ cells with high transplantability, transplantation of dissociated testicular cells isolated from juvenile, immature, and mature Pacific bluefin tuna, which have different proportions of dnd-positive ASG, were performed using chub mackerel as the surrogate recipient species. Colonization of transplanted donor germ cells was only successful with testicular cells from immature Pacific Bluefin tuna, which contained higher proportions of dnd-positive ASG than juvenile and mature fish. Thus, BFTdnd is a useful tool for identifying highly transplantable ASG for spermatogonial transplantation.


Assuntos
Cyprinidae/embriologia , Proteínas de Peixes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/transplante , Atum/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Proteínas de Peixes/genética , Marcadores Genéticos/genética , Masculino , Dados de Sequência Molecular , Ovário/embriologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA , Espermatogônias/classificação , Espermatogônias/metabolismo , Testículo/citologia
10.
Mol Ecol Resour ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712134

RESUMO

The unprecedented loss of global biodiversity is linked to multiple anthropogenic stressors. New conservation technologies are urgently needed to mitigate this loss. The rights, knowledge and perspectives of Indigenous peoples in biodiversity conservation-including the development and application of new technologies-are increasingly recognised. Advances in germplasm cryopreservation and germ cell transplantation (termed 'broodstock surrogacy') techniques offer exciting tools to preserve biodiversity, but their application has been underappreciated. Here, we use teleost fishes as an exemplar group to outline (1) the power of these techniques to preserve genome-wide genetic diversity, (2) the need to apply a conservation genomic lens when selecting individuals for germplasm cryobanking and broodstock surrogacy and (3) the value of considering the cultural significance of these genomic resources. We conclude by discussing the opportunities and challenges of these techniques for conserving biodiversity in threatened teleost fish and beyond.

11.
Fish Shellfish Immunol Rep ; 5: 100102, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37434589

RESUMO

We identified a novel immunoglobulin (Ig) heavy chain-like gene (tsIgH) expressed in the liver of the banded houndshark Triakis scyllium by preliminary transcriptomic analysis. The tsIgH gene showed less than 30% of amino acid identities to Ig genes of the shark. The gene encodes one variable domain (VH) and three conserved domains (CH1-CH3) with a predicted signal peptide. Interestingly, this protein has only one cysteine residue in a linker region between VH and CH1 other than those required for the formation of the immunoglobulin domain. Genome sequencing revealed that each of the domains was encoded by a corresponding single exon, and the exon-intron structures of the homologues are conserved in the other cartilaginous fishes. By RT-qPCR analysis, the transcript of the tsIgH gene was observed only in the liver, while that of the IgM was mainly detected in the epigonal organ, liver, and spleen. The novel Ig-heavy chain-like gene in cartilaginous fish may provide new clues to the evolution of immunoglobulin genes.

12.
Biol Reprod ; 86(4): 107, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22219211

RESUMO

The transplantation of germ cells is a powerful tool both for studying their development and for reproductive biotechnology. An intraperitoneal germ cell transplantation system was recently developed for use in several teleost species. Donor germ cells transplanted into the peritoneal cavity of hatchlings migrated toward and were incorporated into the recipient's genital ridges, where they underwent gametogenesis. Among male germ cells, only type A spermatogonia were capable of colonizing the recipient gonads, unlike those at more advanced stages. The enrichment of type A spermatogonia is therefore important to achieve efficient donor-cell incorporation and subsequent donor-derived gametogenesis. Here we established a simple and rapid system of isolation and enrichment for fish type A spermatogonia, using flow cytometry. Type A spermatogonia were found to have distinctive forward and side light scatter properties compared to that with other types of testicular cell. Based on these characteristics, we were able to isolate and enrich type A spermatogonia by using flow cytometry. After intraperitoneal transplantation, the enriched type A spermatogonia could be successfully incorporated into the recipient genital ridges. This flow cytometry approach using forward and side light scatter was also found to be applicable to other salmonid and sciaenid species, suggesting that it could be a powerful tool for isolating and enriching transplantable type A spermatogonia in a wide range of teleosts. We expect this method to contribute significantly to germ cell biology and biotechnology.


Assuntos
Citometria de Fluxo/métodos , Espermatogônias/citologia , Testículo/citologia , Animais , Luz , Masculino , Perciformes , Salmonidae , Espermatogônias/transplante
13.
BMC Genomics ; 12: 31, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21232142

RESUMO

BACKGROUND: The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. RESULTS: Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. CONCLUSIONS: We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF ß family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/genética , Diferenciação Sexual/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização in Situ Fluorescente , Masculino , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/genética
14.
Dev Comp Immunol ; 124: 104186, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214518

RESUMO

Antibodies of cartilaginous fish are of scientific interest due to their phylogenetic position. In the present study, we developed antiserum against IgM of the banded houndshark, Triakis scyllium, and characterized binding activity of the IgM against fish pathogenic bacteria. Pentameric and monomeric IgM antibodies were separated by gel filtration chromatography using high performance liquid chromatography and SDS-PAGE. Antisera were developed by immunizing rabbits with unfractionated IgM antibodies separated by SDS-PAGE electrophoresis. Shark serum antibodies were found to have binding affinity for Aeromonas hydrophila, Vibrio anguillarum, Edwardsiella tarda, and Pseudomonas plecoglossicida antigens but not Lactococcus garvieae by enzyme-linked immunosorbent assay. We speculate the binding activities of shark antibodies may confer protection against certain bacterial pathogens.


Assuntos
Anticorpos Antibacterianos/imunologia , Bactérias/imunologia , Tubarões/imunologia , Animais , Anticorpos Antibacterianos/sangue , Afinidade de Anticorpos , Bactérias/classificação , Bactérias/patogenicidade , Soros Imunes/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Coelhos , Tubarões/microbiologia
15.
J Comp Neurol ; 529(11): 3013-3031, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33778962

RESUMO

Visual opsins are proteins expressed by retinal photoreceptors that capture light to begin the process of phototransduction. In vertebrates, the two types of photoreceptors (rods and cones) express one or multiple opsins and are distributed in variable patterns across the retina. Some cones form opsin retinal gradients, as in the mouse, whereas others form more demarcated opsin domains, as in the lattice-like mosaic retinas of teleost fishes. Reduced rod opsin (rh1) expression in mouse, zebrafish, and African clawed frog results in lack of photoreceptor outer segments (i.e., the cilium that houses the opsins) and, in the case of the mouse, to retinal degeneration. The effects of diminished cone opsin expression have only been studied in the mouse where knockout of the short-wavelength sensitive 1 (sws1) opsin leads to ventral retinal cones lacking outer segments, but no retinal degeneration. Here we show that, following CRISPR/Cas9 injections that targeted knockout of the sws1 opsin in rainbow trout, fish with diminished sws1 opsin expression exhibited a variety of developmental defects including head and eye malformations, underdeveloped outer retina, mislocalized opsin expression, cone degeneration, and mosaic irregularity. All photoreceptor types were affected even though sws1 is only expressed in the single cones of wild fish. Our results reveal unprecedented developmental defects associated with diminished cone opsin expression and suggest that visual opsin genes are involved in regulatory processes that precede photoreceptor differentiation.


Assuntos
Olho/crescimento & desenvolvimento , Olho/metabolismo , Cabeça/crescimento & desenvolvimento , Opsinas de Bastonetes/biossíntese , Animais , Anuros , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Olho/ultraestrutura , Técnicas de Inativação de Genes/métodos , Camundongos , Microinjeções/métodos , Oncorhynchus mykiss , Retina/crescimento & desenvolvimento , Retina/metabolismo , Retina/ultraestrutura , Opsinas de Bastonetes/genética , Peixe-Zebra
16.
Biol Reprod ; 82(5): 896-904, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20089885

RESUMO

The production of xenogenic gametes from large-bodied, commercially important marine fish species in closely related smaller host fish species with short generation times may enable rapid and simple seed production of the target species. As a first step toward this goal, we assessed the suitability of chub mackerel, Scomber japonicus, as a small-bodied recipient species for xenogenic spermatogonial transplantation. Histological observation of the early gonadal development of chub mackerel larvae and transplantation of fluorescent-labeled spermatogonia from Nibe croaker, Nibea mitsukurii, revealed that 5.3-mm chub mackerel larvae were suitable recipients for successful transplantation. Intraperitoneally transplanted xenogenic spermatogonia efficiently colonized the gonads of these recipient larvae, and donor-derived Nibe croaker germ cells proliferated rapidly soon after colonization. Moreover, gonadal soma-derived growth factor (gsdf) mRNA, a gonadal somatic cell marker, was expressed in recipient-derived cells surrounding the incorporated donor-derived germ cells, suggesting that donor-derived germ cells had settled at an appropriate location in the recipient gonad. Our data show that xenogenic spermatogonial transplantation was successful in chub mackerel and that the somatic microenvironment of the chub mackerel gonad can support the colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells derived from a donor species of a different taxonomic family.


Assuntos
Espécies em Perigo de Extinção , Sobrevivência de Enxerto , Técnicas de Reprodução Assistida/veterinária , Espermatogônias/transplante , Transplante Heterólogo/veterinária , Animais , Proliferação de Células , Pesqueiros , Masculino , Perciformes , Especificidade da Espécie , Espermatogênese/fisiologia , Espermatogônias/crescimento & desenvolvimento , Transplante Heterólogo/métodos
17.
Commun Biol ; 3(1): 516, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948803

RESUMO

The colonisation of freshwater environments by marine fishes has historically been considered a result of adaptation to low osmolality. However, most marine fishes cannot synthesise the physiologically indispensable fatty acid, docosahexaenoic acid (DHA), due to incomplete DHA biosynthetic pathways, which must be adapted to survive in freshwater environments where DHA is poor relative to marine environments. By analysing DHA biosynthetic pathways of one marine and three freshwater-dependent species from the flatfish family Achiridae, we revealed that functions of fatty acid metabolising enzymes have uniquely and independently evolved by multi-functionalisation or neofunctionalisation in each freshwater species, such that every functional combination of the enzymes has converged to generate complete and functional DHA biosynthetic pathways. Our results demonstrate the elaborate patchwork of fatty acid metabolism and the importance of acquiring DHA biosynthetic function in order for fish to cross the nutritional barrier at the mouth of rivers and colonise freshwater environments.


Assuntos
Vias Biossintéticas/genética , Monitoramento Ambiental , Linguados/genética , Animais , Linguados/fisiologia , Água Doce , Humanos , Filogenia
18.
Mol Immunol ; 45(8): 2150-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18241922

RESUMO

The Atlantic salmon (Salmo salar) T-cell receptor gamma (TCRgamma) gene has extensive diversity in its capacity for antigen recognition due to the V-J-C gene segments recombinational possibilities, and N-region diversity. This is the first report completely characterizing and annotating a TCRgamma gene locus in teleosts. We identified two different TCRgamma loci in Atlantic salmon. The first locus, TCRgamma 1, spans 260 kbp and contains four tandemly repeated clusters each of which consists of 1-4 variable (V) segments, 1-2 sets of a joining (J) segment and a constant (C) region. In total, 10 V segments, 5 J segments and 5 C regions were found in locus 1. In the second locus, TCRgamma 2, a single non-expressed V-J-C cluster was found. Surprisingly, the Atlantic salmon TCRgamma loci have a larger number of C regions relative to other teleosts, mouse and human. In addition, each Atlantic salmon TCRgamma C region has a different connecting peptide region that may result in distinct cellular responses. Expression data confirm the diverse repertoire found at the genomic level. At least 6 out of 7 functional V segments, all 5 J segments and all 5 C regions found in TCRgamma 1 were identified in TCRgamma transcription analysis. The identification and characterization of the functional TCRgamma 1 along with the associated TCR alpha/delta locus suggest that Atlantic salmon have a functional gammadelta T-cell immune component.


Assuntos
Variação Genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Salmo salar/genética , Salmo salar/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Clonais , DNA Complementar/análise , DNA Complementar/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genoma , Dados de Sequência Molecular , Filogenia , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Análise de Sequência de DNA
19.
BMC Genomics ; 9: 522, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18980692

RESUMO

BACKGROUND: Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (gh) in salmonids is represented by duplicated, non-allelic isoforms designated as gh1 and gh2. We have isolated and characterized gh-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (Salmo salar and Oncorhynchus tshawytscha) in order to further elucidate our understanding of the conservation and regulation of these loci. RESULTS: BACs containing gh1 and gh2 from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to gh1 and gh2. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of gh, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four gh genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development. CONCLUSION: A core proximal promoter for transcription of both gh1 and gh2 is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of gh1 and gh2. Additionally, organization of transposon families into the BACs containing gh1 and for the BACs containing gh2, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the gh1- and gh2-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other Oncorhynchus GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Hormônio do Crescimento/genética , Salmão/genética , Sequência de Aminoácidos , Animais , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , DNA Complementar/genética , Biblioteca Gênica , Íntrons , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
20.
Dev Comp Immunol ; 32(3): 204-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17604101

RESUMO

The complete TCR alpha/delta locus of Atlantic salmon (Salmo salar) has been characterized and annotated. In the 900 kb TCR alpha/delta locus, 292 Valpha/delta segments and 123 Jalpha/delta segments were identified. Of these, 128 Valpha/delta, 113 Jalpha, and a Jdelta segment appeared to be functional as they lacked frame shifts or stop codons. This represents the largest repertoire of Valpha/delta and Jalpha segments of any organism to date. The 128 functional Valpha/delta segments could be grouped into 29 subgroups based upon 70% nucleotide similarity. Expression data confirmed the usage of the diverse repertoire found at the genomic level. At least 99 Valpha, 13 Vdelta 86 Jalpha, 1 Jdelta, and 2 Ddelta segments were used in TCR alpha or delta transcription, and 652 unique genes were identified from a sample of 759 TCRalpha cDNA clones. Cumulatively, the genomic and expression data suggest that the Atlantic salmon T-cell receptor has enormous capacity to recognize a wide diversity of antigens.


Assuntos
Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T/genética , Salmo salar/genética , Alelos , Animais , Sequência de Bases , Regiões Determinantes de Complementaridade/genética , DNA Complementar/química , DNA Complementar/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Ordem dos Genes , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmo salar/imunologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA