Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2318411121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805279

RESUMO

Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g., skyrmions) and associated nonlinear and topological Hall effects (THE). Here, we present metamagnetism-induced Hall anomalies in single-crystalline ErGa2, which recalls features arising from the THE but wherein the strong Ising-type anisotropy of Er moments prohibits noncoplanar spin structures. We show that the observed anomalies are neither due to anomalous Hall effect nor THE; instead, can be accounted for via 4f-5d interactions which produce a band-dependent mobility modulation. This leads to a pronounced multiband Hall response across the magnetization process-a metamagnetic multiband Hall effect that resembles a topological-Hall-like response but without nontrivial origins. The present findings may be of general relevance in itinerant metamagnetic systems regardless of coplanar/noncoplanar nature of spins and are important for the accurate identification of Hall signals due to emergent magnetic fields.

2.
Proc Natl Acad Sci U S A ; 121(25): e2320052121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870056

RESUMO

Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO[Formula: see text], an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of [Formula: see text] due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn-Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric response of single-crystal TmVO[Formula: see text], and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications and provides insight into the dynamic quadrupole strain susceptibility.

3.
Nat Commun ; 15(1): 7005, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143053

RESUMO

Revealing the presence of magnetic octupole order and associated octupole fluctuations in solids is a highly challenging task due to the lack of simple external fields that can couple to magnetic octupoles. Here, we demonstrate a methodology for probing the magnetic octupole susceptibility of a candidate material, PrV2Al20, using a product of magnetic field Hi and shear strain ϵjk as a composite effective field, while employing an adiabatic elastocaloric effect to probe the response. We observe Curie-Weiss behavior in the obtained octupolar susceptibility down to approximately 3 K. Although octupole order does not appear to be the leading multipolar channel in PrV2Al20, our results nevertheless reveal the presence of strong magnetic octupole fluctuations and hence demonstrate that octupole order is at least a competing state. More broadly, our results highlight how anisotropic strain can be combined with magnetic fields to probe elusive 'hidden' electronic orders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA