Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Immunol ; 15(3): 231-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464131

RESUMO

Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquired Lys63 (K63)-linked polyubiquitination mediated by the apoptosis inhibitor cIAP2 that was enhanced by the bioactive lipid S1P. In response to IL-1, cIAP2 and the sphingosine kinase SphK1 (the enzyme that generates S1P) formed a complex with IRF1, which led to its activation. Thus, IL-1 triggered a hitherto unknown signaling cascade that controlled the induction of IRF1-dependent genes that encode molecules important for sterile inflammation.


Assuntos
Quimiocina CCL5/biossíntese , Quimiocina CXCL10/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interleucina-1/metabolismo , Transdução de Sinais/imunologia , Animais , Quimiocina CCL5/imunologia , Quimiocina CXCL10/imunologia , Quimiotaxia de Leucócito/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Imunoprecipitação , Inflamação/imunologia , Inflamação/metabolismo , Fator Regulador 1 de Interferon/imunologia , Interleucina-1/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lisina , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitinação
2.
J Neuroinflammation ; 19(1): 158, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35718775

RESUMO

BACKGROUND: Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown. METHODS: We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. RESULTS: cIAP2-/- mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. CONCLUSIONS: Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias
3.
J Immunol ; 194(6): 2862-70, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681350

RESUMO

The secreted protein, YKL-40, has been proposed as a biomarker of a variety of human diseases characterized by ongoing inflammation, including chronic neurologic pathologies such as multiple sclerosis and Alzheimer's disease. However, inflammatory mediators and the molecular mechanism responsible for enhanced expression of YKL-40 remained elusive. Using several mouse models of inflammation, we now show that YKL-40 expression correlated with increased expression of both IL-1 and IL-6. Furthermore, IL-1 together with IL-6 or the IL-6 family cytokine, oncostatin M, synergistically upregulated YKL-40 expression in both primary human and mouse astrocytes in vitro. The robust cytokine-driven expression of YKL-40 in astrocytes required both STAT3 and NF-κB binding elements of the YKL-40 promoter. In addition, YKL-40 expression was enhanced by constitutively active STAT3 and inhibited by dominant-negative IκBα. Surprisingly, cytokine-driven expression of YKL-40 in astrocytes was independent of the p65 subunit of NF-κB and instead required subunits RelB and p50. Mechanistically, we show that IL-1-induced RelB/p50 complex formation was further promoted by oncostatin M and that these complexes directly bound to the YKL-40 promoter. Moreover, we found that expression of RelB was strongly upregulated during inflammation in vivo and by IL-1 in astrocytes in vitro. We propose that IL-1 and the IL-6 family of cytokines regulate YKL-40 expression during sterile inflammation via both STAT3 and RelB/p50 complexes. These results suggest that IL-1 may regulate the expression of specific anti-inflammatory genes in nonlymphoid tissues via the canonical activation of the RelB/p50 complexes.


Assuntos
Adipocinas/genética , Citocinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Lectinas/genética , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelB/metabolismo , Adipocinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3 , Citocinas/genética , Feminino , Glicoproteínas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/farmacologia , Interleucina-6/genética , Interleucina-6/farmacologia , Lectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Subunidade p50 de NF-kappa B/genética , Oncostatina M/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição RelB/genética
4.
FASEB J ; 29(12): 4853-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246404

RESUMO

The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNß production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-ß amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.


Assuntos
Quimiocina CCL5/antagonistas & inibidores , Interferon beta/metabolismo , Interleucina-1/antagonistas & inibidores , Lisofosfolipídeos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/biossíntese , Interferon beta/biossíntese , Ligantes , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Esfingosina/fisiologia
5.
J Heart Lung Transplant ; 43(5): 816-825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38232791

RESUMO

BACKGROUND: Presence of donor-specific antibodies (DSAs), particularly to class II antigens, remains a major challenge in pediatric heart transplantation. Donor-recipient human leukocyte antigen (HLA) matching is a potential strategy to mitigate poor outcomes associated with DSAs. We evaluated the hypothesis that antigen mismatching at the DQB1 locus is associated with worse rejection-free survival. METHODS: Data were collected from Scientific Registry of Transplant Recipients for all pediatric heart transplant recipients 2010-2021. Only transplants with complete HLA typing at the DQB1 locus for recipient and donor were included. Primary outcome was rejection-free graft survival through 5 years. RESULTS: Of 5,115 children, 4,135 had complete DQB1 typing and were included. Of those, 503 (12%) had 0 DQB1 donor-recipient mismatches, 2,203 (53%) had 1, and 1,429 (35%) had 2. Rejection-free survival through 5 years trended higher for children with 0 DQB1 mismatches (68%), compared to those with 1 (62%) or 2 (63%) mismatches (pairwise p = 0.08 for both). In multivariable analysis, 0 DQB1 mismatches remained significantly associated with improved rejection-free graft survival compared to 2 mismatches, while 1 DQB1 mismatch was not. Subgroup analysis showed the strongest effect in non-Hispanic Black children and those undergoing retransplant. CONCLUSIONS: Matching at the DQB1 locus is associated with improved rejection-free survival after pediatric heart transplant, particularly in Black children, and those undergoing retransplant. Assessing high-resolution donor typing at the time of allocation may further corroborate and refine this association. DQB1 matching may improve long-term outcomes in children stabilized either with optimal pharmacotherapy or supported with durable devices able to await ideal donors.


Assuntos
Rejeição de Enxerto , Sobrevivência de Enxerto , Cadeias beta de HLA-DQ , Transplante de Coração , Humanos , Masculino , Criança , Feminino , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Pré-Escolar , Cadeias beta de HLA-DQ/genética , Lactente , Teste de Histocompatibilidade/métodos , Adolescente , Estudos Retrospectivos , Doadores de Tecidos , Sistema de Registros , Transplantados
6.
Cancer Metastasis Rev ; 30(3-4): 577-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002715

RESUMO

Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/metabolismo , Animais , Transporte Biológico , Líquido Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Nat Protoc ; 16(4): 1995-2022, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627842

RESUMO

Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.


Assuntos
Divisão Celular , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Miócitos Cardíacos/citologia , Timidina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Feminino , Feto/citologia , Humanos , Imageamento Tridimensional , Lactente , Leucócitos/citologia , Miocárdio/citologia , Isótopos de Nitrogênio/urina , Ploidias , Gravidez , Sarcômeros/metabolismo , Tetralogia de Fallot/patologia
8.
Int J Cardiol ; 339: 36-42, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265312

RESUMO

BACKGROUND: Patients with Tetralogy of Fallot with pulmonary stenosis (ToF/PS), the most common form of cyanotic congenital heart disease (CHD), develop adverse right ventricular (RV) remodeling, leading to late heart failure and arrhythmia. We recently demonstrated that overactive ß-adrenergic receptor signaling inhibits cardiomyocyte division in ToF/PS infants, providing a conceptual basis for the hypothesis that treatment with the ß-adrenergic receptor blocker, propranolol, early in life would increase cardiomyocyte division. No data are available in ToF/PS infants on the efficacy of propranolol as a possible novel therapeutic option to increase cardiomyocyte division and potentially reduce adverse RV remodeling. METHODS: Using a randomized, double-blind, placebo-controlled trial, we will evaluate the effect of propranolol administration on reactivating cardiomyocyte proliferation to prevent adverse RV remodeling in 40 infants with ToF/PS. Propranolol administration (1 mg/kg po QID) will begin at 1 month of age and last until surgical repair. The primary endpoint is cardiomyocyte division, quantified after 15N-thymidine administration with Multi-isotope Imaging Mass Spectrometry (MIMS) analysis of resected myocardial specimens. The secondary endpoints are changes in RV myocardial and cardiomyocyte hypertrophy. CONCLUSION: This trial will be the first study in humans to assess whether cardiomyocyte proliferation can be pharmacologically increased. If successful, the results could introduce a paradigm shift in the management of patients with ToF/PS from a purely surgical approach, to synergistic medical and surgical management. It will provide the basis for future multi-center randomized controlled trials of propranolol administration in infants with ToF/PS and other types of CHD with RV hypertension. CLINICAL TRIAL REGISTRATION: The trial protocol was registered at clinicaltrials.gov (NCT04713657).


Assuntos
Estenose da Valva Pulmonar , Tetralogia de Fallot , Humanos , Lactente , Miócitos Cardíacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Adrenérgicos beta 2 , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA