Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260148

RESUMO

Evolutionarily conserved Notch signaling is highly sensitive to changes in Notch receptor dose caused by intrinsic and environmental fluctuations. It is well known that epigenetic regulation responds dynamically to genetic, cellular and environmental stresses. However, it is unclear whether the Notch receptor dose is directly regulated at the epigenetic level. Here, by studying the role of the upstream epigenetic regulator Stuxnet (Stx) in Drosophila developmental signaling, we find that Stx promotes Notch receptor mRNA expression by counteracting the activity of Polycomb repressive complex 1 (PRC1). In addition, we provide evidence that Notch is a direct PRC1 target by identifying and validating in vivo the only bona fide Polycomb response element (PRE) among the seven Polycomb group (PcG)-binding sites revealed by DamID-seq and ChIP-seq analysis. Importantly, in situ deletion of this PRE results in increased Notch expression and phenotypes resembling Notch hyperactivation in cell fate specification. These results not only underscore the importance of epigenetic regulation in fine-tuning the Notch activity dose, but also the need to assess the physiological significance of omics-based PcG binding in development.


Assuntos
Proteínas de Drosophila , Epigênese Genética , Animais , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Elementos de Resposta/genética , Receptores Notch/genética , Receptores Notch/metabolismo
2.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677730

RESUMO

In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.


Assuntos
Ácidos Graxos Ômega-3 , Cardiopatias , Humanos , Óleos de Peixe , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA