Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Immunol ; 208(4): 861-869, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35046104

RESUMO

The IL-36 family, including IL-36α, IL-36ß, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.


Assuntos
Concanavalina A/efeitos adversos , Hepatite/etiologia , Hepatite/metabolismo , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hepatite/diagnóstico , Imunofenotipagem , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina-1/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Cancer Sci ; 114(2): 504-520, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36169092

RESUMO

Hepatic stellate cell (HSC) activation is a critical event in the development of hepatic fibrosis and hepatocellular carcinoma (HCC). By the release of soluble cytokines, chemokines, and chemotaxis, HSCs affect HCC cell phenotypes through a complex tumor microenvironment. In this study, weighted gene co-expression network analysis (WGCNA) was used to identify the TGF-ß signaling pathway as a key signaling pathway in Hep3B cells cultured in HSC conditioned medium. MIR4435-2HG is a hub lncRNA associated with the TGF-ß signaling pathway and HSC activation. HSC-condition medium (CM) culture induced HCC cell malignant behaviors, which were partially reversed by MIR4435-2HG silencing. miR-506-3p directly bound to MIR4435-2HG and the 3'UTR of TGFB1. Similarly, overexpression of miR-506-3p also attenuated HSC-CM-induced malignant behavior of HCC cells. In HSC-CM cultured HCC cells, the effects of MIR4435-2HG knockdown on TGFB1 expression and HCC cell phenotypes were partially reversed by miR-506-3p inhibition. HSCs affected HCC cell phenotypes by releasing CXCL1. In an orthotopic xenotransplanted tumor model of HCC cells plus HSCs in mice, CXCR2 knockdown in HCC cells significantly inhibited tumorigenesis, which was partially reversed by MIR4435-2HG overexpression in HCC cells. In HCC tissue samples, the levels of CXCL1, TGF-ß1, and MIR4435-2HG were upregulated, while miR-506-3p expression was downregulated. In conclusion, HSC-released CXCL1 aggravated HCC cell malignant behaviors through the MIR4435-2HG/miR-506-3p/TGFB1 axis. In addition to CXCL1, the MIR4435-2HG/miR-506-3p/TGFB1 axis might also be the underlying target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Carcinoma Hepatocelular/patologia , MicroRNAs/metabolismo , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , RNA Longo não Codificante/genética , Microambiente Tumoral
3.
Immunology ; 165(1): 61-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411293

RESUMO

Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glucose/metabolismo , Interleucina-33/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-33/genética , Ácido Láctico/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais
4.
J Transl Med ; 20(1): 212, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562734

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common pathological type of liver cancer. Valosin-containing protein (VCP) is a member of the AAA-ATPase family associated with multiple molecular functions and involved in tumor metastasis and prognosis. However, the role of VCP in HCC progression is still unclear. METHODS: We examined the expression of VCP in HCC using the RNA sequencing and microarray data from public databases and measured it in clinical samples and cell lines by western blot, and immunohistochemistry (IHC). We also evaluated the correlation between VCP and clinical features. The VCP-interacting proteins were identified by co-immunoprecipitation combined with mass spectrometry (CoIP/MS). The underlying molecular mechanisms were investigated using in vitro and in vivo models of HCC. RESULTS: We found that VCP expression is significantly increased in tumor tissues and is associated with advanced TNM stages and poorer prognosis in HCC patients. In vitro analyses revealed that VCP overexpression promoted HCC cell proliferation, migration, and invasion via PI3K/AKT/mTOR pathway activation. Conversely, VCP knockdown resulted in the reverse phenotypes. In vivo studies indicated that up-regulated VCP expression accelerated tumor growth in a subcutaneous HCC model. The D1 domain of VCP and A box of HMGB1 were identified as the critical regions for their interaction, and D1 area was required for the tumor-promoting effects induced by VCP expression. VCP enhanced the protein stability of HMGB1 by decreasing its degradation via ubiquitin-proteasome process. Inhibition of HMGB1 markedly attenuated VCP-mediated HCC progression and downstream activation of PI3K/AKT/mTOR signals. CONCLUSION: Collectively, these findings demonstrate that VCP is a potential prognostic biomarker in HCC and exhibits oncogenic roles via PI3K/AKT/mTOR pathway activation. HMGB1 played an essential role in VCP-mediated HCC progression, indicating that VCP and HMGB1 are potential therapeutic targets in human HCC.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteína HMGB1/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína com Valosina/metabolismo
5.
Cancer Cell Int ; 22(1): 314, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224658

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant solid tumors worldwide. Recent evidence shows that the stimulator of interferon genes (STING) pathway is essential for anti-tumor immunity via inducing the production of downstream inflammatory cytokines. However, its impact on the prognosis and tumor microenvironment of HCC was still limited known. METHODS: We obtained gene expression profiles of HCC from GEO, TCGA, and ICGC databases, and immune-related genes (IRGs) from the ImmPort database. Multivariate Cox regression was performed to identify independent prognostic factors. Nomogram was established to predict survival probability for individual patients. Kaplan-Meier curve was used to evaluate the survival difference. Afterward, ESTIMATE, TISCH, and TIMER databases were combined to assess the immune cell infiltration. Furthermore, the qPCR, western blotting, and immunohistochemistry were done to evaluate gene expression, and in vitro cell models were built to determine cell migratory ability. RESULTS: We found that gene markers of NLRC3, STING1, TBK1, TRIM21, and XRCC6 within STING pathway were independent prognostic factors in HCC patients. Underlying the finding, a predictive nomogram was constructed in TCGA-training cohort and further validated in TCGA-all and ICGC datasets, showing credible performance. Experimentally, up-regulated TBK1 promotes the ability of HCC cell migration. Next, the survival-related immune-related co-expressed gene signatures (IRCGS) (VAV1, RHOA, and ZC3HAV1) were determined in HCC cohorts and their expression was verified in human HCC cells and clinical samples. Furthermore, survival-related IRCGS was associated with the infiltration of various immune cell subtypes in HCC, the transcriptional expression of prominent immune checkpoints, and immunotherapeutic response. CONCLUSION: Collectively, we constructed a novel prognostic nomogram model for predicting the survival probability of individual HCC patients. Moreover, an immune-related prognostic gene signature was determined. Both might function as potential therapeutic targets for HCC treatment in the future.

6.
Virol J ; 19(1): 75, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459229

RESUMO

BACKGROUND: Patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT) are prone to complicate viral infection. Central nervous system (CNS) involvement caused by the viruses is rare but with poor prognosis. Hantavirus, which usually cause hemorrhagic fever with renal syndrome (HFRS), and none case has been reported about these infection in allo-HSCT patients. CASE PRESENTATION: In August 2021, a 13-year-old male child developed intermittent fever and refractory hypotension after allo-HSCT. Magnetic resonance imaging of the head revealed abnormal signal foci in the left midbrain cerebral peduncle and bilateral thalamus. His family reported traces of mouse activity in the patient's home kitchen. HFRS was suspected, but with no significant kidney damage. The specific immunoglobulin (Ig) G and M of hantavirus were negative. The metagenomic next-generation sequencing (mNGS) detected Seoul Orthohantavirus (SEOV) sequences directly in cerebrospinal fluid and blood. CONCLUSIONS: Allo-HSCT patients are a high-risk group for infection. Usually the causative agent of infection is difficult to determine, and sometimes the site of infection is concealed. This report highlights the importance of suspecting hantavirus infection in allo-HSCT patients with CNS symptoms despite the absence of renal syndromes. The mNGS is a powerful tool for detecting pathogens. CNS infection with Seoul orthohantavirus in transplant patients is rare but possible as demonstrated in this case. To the best of our knowledge, this is the first reported case employing mNGS to diagnose SEOV caused CNS infection in an allo-HSCT patient.


Assuntos
Infecções do Sistema Nervoso Central , Infecções por Hantavirus , Transplante de Células-Tronco Hematopoéticas , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Vírus Seoul , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Febre Hemorrágica com Síndrome Renal/diagnóstico , Humanos , Imunoglobulina G , Masculino , Camundongos , Seul , Vírus Seoul/genética
7.
J Immunol ; 204(11): 2984-2994, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284332

RESUMO

Vitamin A deficiency (VAD) is a major public health problem and is associated with increased host susceptibility to infection; however, how VAD influences viral infection remains unclear. Using a persistent lymphocytic choriomeningitis virus infection model, we showed in this study that although VAD did not alter innate type I IFN production, infected VAD mice had hyperactive, virus-specific T cell responses at both the acute and contraction stages, showing significantly decreased PD-1 but increased cytokine (IFN-γ, TNF-α, and IL-2) expression by T cells. Compared with control mice, VAD mice displayed excessive inflammation and more severe liver pathology, with increased death during persistent infection. Of note, supplements of all-trans retinoic acid (RA), one of the important metabolites of vitamin A, downregulated hyperactive T cell responses and rescued the persistently infected VAD mice. By using adoptive transfer of splenocytes, we found that the environmental vitamin A or its metabolites acted as rheostats modulating antiviral T cells. The analyses of T cell transcriptional factors and signaling pathways revealed the possible mechanisms of RA, as its supplements inhibited the abundance of NFATc1 (NFAT 1), a key regulator for T cell activation. Also, following CD3/CD28 cross-linking stimulation, RA negatively regulated the TCR-proximal signaling in T cells, via decreased phosphorylation of Zap70 and its downstream signals, including phosphorylated AKT, p38, ERK, and S6, respectively. Together, our data reveal VAD-mediated alterations in antiviral T cell responses and highlight the potential utility of RA for modulating excessive immune responses and tissue injury in infectious diseases.


Assuntos
Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Tretinoína/metabolismo , Deficiência de Vitamina A/imunologia , Transferência Adotiva , Animais , Células Cultivadas , Resistência à Doença , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Oncogênica v-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
8.
J Neuroinflammation ; 17(1): 249, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843067

RESUMO

BACKGROUND: The Zika virus (ZIKV) outbreak that occurred in multiple countries was linked to increased risk of nervous system injuries and congenital defects. However, host immunity- and immune-mediated pathogenesis in ZIKV infection are not well understood. Interleukin-22 (IL-22) is a crucial cytokine for regulating host immunity in infectious diseases. Whether IL-22 plays, a role in ZIKV infection is unknown. METHODS: The cellular source of IL-22 was identified in IFNAR-/- mice and wild-type (WT) neonatal mice during ZIKV infection. To determine the role of IL-22, we challenged 1-day-old WT and IL-22-/- mice with ZIKV and monitored clinical manifestations. Glial cell activation in the brain was assessed by confocal imaging. ZIKV-specific CD8+ T cell responses in both the spleen and brain were analyzed by flow cytometry. In addition, glial cells were cultured in vitro and infected with ZIKV in the presence of IL-22, followed by the evaluation of cell proliferation, cytokine expression, and viral loads. RESULTS: We found that γδ T cells were the main source of IL-22 during ZIKV infection in both the spleen and brain. WT mice began to exhibit weight loss, staggered steps, bilateral hind limb paralysis, and weakness at 10 days post-infection (dpi) and ultimately succumbed to infection at 16-19 dpi. IL-22 deficiency lessened weight loss, moderated the systemic inflammatory response, and greatly improved clinical signs of neurological disease and mortality. ZIKV infection also induced the activation of microglia and astrocytes in vitro. Additional analysis demonstrated that the absence of IL-22 resulted in reduced activation of microglia and astrocytes in the cortex. Although IL-22 displayed a negligible effect on glial cells in vitro, IL-22-/- mice mounted more vigorous ZIKV-specific CD8+ T cell responses, which led to a more effective control of ZIKV in the brain. CONCLUSIONS: Our data revealed a pathogenic role of IL-22 in ZIKV encephalitis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucinas/metabolismo , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Interleucinas/genética , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/virologia , Infecção por Zika virus/metabolismo , Interleucina 22
9.
J Immunol ; 198(9): 3448-3460, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363907

RESUMO

Although large amounts of vitamin A and its metabolite all-trans retinoic acid (RA) are stored in the liver, how RA regulates liver immune responses during viral infection remains unclear. In this study, we demonstrated that IL-22, mainly produced by hepatic γδ T cells, attenuated liver injury in adenovirus-infected mice. RA can promote γδ T cells to produce mTORC1-dependent IL-22 in the liver, but inhibits IFN-γ and IL-17. RA also affected the aptitude of T cell responses by modulating dendritic cell (DC) migration and costimulatory molecule expression. These results suggested that RA plays an immunomodulatory role in viral infection. Proteomics data revealed that RA downregulated S100 family protein expression in DCs, as well as NF-κB/ERK pathway activation in these cells. Furthermore, adoptive transfer of S100A4-repressed, virus-pulsed DCs into the hind foot of naive mice failed to prime T cell responses in draining lymph nodes. Our study has demonstrated a crucial role for RA in promoting IL-22 production and tempering DC function through downregulating S100 family proteins during viral hepatitis.


Assuntos
Adenoviridae/imunologia , Células Dendríticas/efeitos dos fármacos , Hepatite Viral Animal/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Interleucinas/metabolismo , Fígado/imunologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Tretinoína/uso terapêutico , Animais , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/virologia , Interleucina 22
10.
Am J Pathol ; 187(2): 352-365, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27960090

RESUMO

Traumatic optic neuropathy (TON) is an acute injury of the optic nerve secondary to trauma. Loss of retinal ganglion cells (RGCs) is a key pathological process in TON, yet mechanisms responsible for RGC death remain unclear. In a mouse model of TON, real-time noninvasive imaging revealed a dramatic increase in leukocyte rolling and adhesion in veins near the optic nerve (ON) head at 9 hours after ON injury. Although RGC dysfunction and loss were not detected at 24 hours after injury, massive leukocyte infiltration was observed in the superficial retina. These cells were identified as T cells, microglia/monocytes, and neutrophils but not B cells. CXCL10 is a chemokine that recruits leukocytes after binding to its receptor C-X-C chemokine receptor (CXCR) 3. The levels of CXCL10 and CXCR3 were markedly elevated in TON, and up-regulation of CXCL10 was mediated by STAT1/3. Deleting CXCR3 in leukocytes significantly reduced leukocyte recruitment, and prevented RGC death at 7 days after ON injury. Treatment with CXCR3 antagonist attenuated TON-induced RGC dysfunction and cell loss. In vitro co-culture of primary RGCs with leukocytes resulted in increased RGC apoptosis, which was exaggerated in the presence of CXCL10. These results indicate that leukocyte recruitment in retinal vessels near the ON head is an early event in TON and the CXCL10/CXCR3 axis has a critical role in recruiting leukocytes and inducing RGC death.


Assuntos
Quimiocina CXCL10/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Traumatismos do Nervo Óptico/patologia , Receptores CXCR3/metabolismo , Células Ganglionares da Retina/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Compressão Nervosa , Traumatismos do Nervo Óptico/metabolismo , Reação em Cadeia da Polimerase
11.
Eur J Immunol ; 45(11): 3052-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26249267

RESUMO

Recent studies have revealed IL-33 as a key factor in promoting antiviral T-cell responses. However, it is less clear as to how IL-33 regulates innate immunity. In this study, we infected wild-type (WT) and IL-33(-/-) mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection-induced IL-33 expression for robust innate IFN-γ production in the liver. We first show that IL-33 deficiency resulted in a marked reduction in the number of IFN-γ(+) γδ T and NK cells, but an increase in that of IL-17(+) γδ T cells at 16 h postinfection. Recombinant IL-33 (rIL-33) treatment could reverse such deficiency via increasing IFN-γ-producing γδ T and NK cells, and inhibiting IL-17(+) γδ T cells. We also found that rIL-33-induced type 2 innate lymphoid cells were not involved in T-cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN-γ and TNF-α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL-33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL-33 in regulating innate IFN-γ-production and DC function during viral hepatitis.


Assuntos
Infecções por Arenaviridae/imunologia , Células Dendríticas/imunologia , Hepatite/imunologia , Imunidade Inata/imunologia , Interferon gama/biossíntese , Interleucina-33/imunologia , Vírus da Coriomeningite Linfocítica , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hepatite/virologia , Interleucina-33/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia
12.
Mol Cell Biochem ; 390(1-2): 271-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24510323

RESUMO

High mobility group protein box1 (HMGB1) and its receptor-receptor for advanced glycation end products (RAGE) are pivotal factors in the development and progression of many types of tumor, but the role of HMGB1-RAGE axis in hepatocellular carcinoma (HCC) especially its effects on metastasis and recurrence remains obscure. Here, we report the role of HMGB1-RAGE axis in the biological behaviors of HCC cell lines and the underlying molecular mechanism. We show that the expressions of HMGB1, RAGE, and extracellular HMGB1 increase consistently according to cell metastasis potentials, while the concentration of soluble form of RAGE (sRAGE) is inversely related to metastasis potential of HCC cells. Furthermore, our data show that rhHMGB1 promotes cellular proliferation, migration, and invasion, and increases the level of nuclear factor kappa B (NF-κB), while administrations of HMGB1-siRNA, RAGE-siRNA, anti-HMGB1 neutralizing antibody, anti-RAGE neutralizing antibody, and sRAGE inhibit cellular proliferation, migration, and invasion. Moreover, we also demonstrate that the expression of NF-кB is inhibited by knockdown of HMGB1 or RAGE. Collectively, these data demonstrate that HMGB1 activates RAGE signaling pathways and induces NF-кB activation to promote cellular proliferation, invasion, and metastasis, in HCC cell lines. Taken together, HMGB1-RAGE axis may become a potential target in HCC therapy.


Assuntos
Carcinoma Hepatocelular/genética , Proteína HMGB1/genética , Neoplasias Hepáticas/genética , Receptores Imunológicos/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , NF-kappa B/genética , Invasividade Neoplásica/genética , RNA Interferente Pequeno , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/genética
13.
Int J Biol Macromol ; 257(Pt 1): 128574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052281

RESUMO

Thrombosis and bleeding are common complications of blood-contacting medical device therapies. In this work, an endothelium membrane mimetic coating (PMPCC/Hep) has been created to address these challenges. The coating is fabricated by multi-point anchoring of a phosphorylcholine copolymer (poly-MPC-co-MSA, PMPCC) with carboxylic side chains and end-group grafting of unfractionated heparin (Hep) onto polydopamine precoated blood-contacting material surfaces. The PMPCC coating forms an ultrathin cell outer membrane mimetic layer to resist protein adsorption and platelet adhesion. The tiny defects/pores of the PMPCC layer provide entrances for heparin end-group to be inserted and grafted onto the sub-layer amino groups. The combination of the PMPCC cell membrane mimetic anti-fouling nature with the grafted heparin bioactivity further enhances the anticoagulation performance of the formed endothelium membrane mimetic PMPCC/Hep coating. Compared to conventional Hep coating, the PMPCC/Hep coating further decreases protein adsorption and platelet adhesion by 50 % and 90 %, respectively. More significantly, the PMPCC/Hep coating shows a superior anticoagulation activity, even significantly higher than that of an end-point-attached heparin coating. Furthermore, the blood coagulation function is well preserved in the PMPCC/Hep coating anticoagulation strategy. All the results support that the PMPCC/Hep coating strategy has great potential in developing more efficient and safer blood-contacting medical devices.


Assuntos
Coagulação Sanguínea , Heparina , Heparina/química , Membrana Celular/metabolismo , Endotélio/metabolismo , Anticoagulantes/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
14.
Acta Biomater ; 186: 185-200, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39103136

RESUMO

Thrombosis and plasma leakage are two of the most frequent dysfunctions of polypropylene (PP) hollow fiber membrane (PPM) used in extracorporeal membrane oxygenation (ECMO) therapy. In this study, a superhydrophilic endothelial membrane mimetic coating (SEMMC) was constructed on polydopamine-polyethyleneimine pre-coated surfaces of the PPM oxygenator and its ECMO circuit to explore safer and more sustainable ECMO strategy. The SEMMC is fabricated by multi-point anchoring of a phosphorylcholine and carboxyl side chained copolymer (PMPCC) and grafting of heparin (Hep) to form PMPCC-Hep interface, which endows the membrane superior hemocompatibility and anticoagulation performances. Furthermore, the modified PPM reduces protein adsorption amount to less than 30 ng/cm2. More significantly, the PMPCC-Hep coated ECMO system extends the anti-leakage and non-clotting oxygenation period to more than 15 h in anticoagulant-free animal extracorporeal circulation, much better than the bare and conventional Hep coated ECMO systems with severe clots and plasma leakage in 4 h and 8 h, respectively. This SEMMC strategy of grafting bioactive heparin onto bioinert zwitterionic copolymer interface has great potential in developing safer and longer anticoagulant-free ECMO systems. STATEMENT OF SIGNIFICANCE: A superhydrophilic endothelial membrane mimetic coating was constructed on surfaces of polypropylene hollow fiber membrane (PPM) oxygenator and its ECMO circuit by multi-point anchoring of a phosphorylcholine and carboxyl side chain copolymer (PMPCC) and grafting of heparin (Hep). The strong antifouling nature of the PMPCC-Hep coating resists the adsorption of plasma bio-molecules, resulting in enhanced hemocompatibility and anti-leakage ability. The grafted heparin on the zwitterionic PMPCC interface exhibits superior anticoagulation property. More significantly, the PMPCC-Hep coating achieves an extracorporeal circulation in a pig model for at least 15 h without any systemic anticoagulant. This endothelial membrane mimetic anticoagulation strategy shows great potential for the development of safer and longer anticoagulant-free ECMO systems.


Assuntos
Materiais Revestidos Biocompatíveis , Oxigenação por Membrana Extracorpórea , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Heparina/química , Heparina/farmacologia , Humanos , Polipropilenos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Fibrinolíticos/farmacologia , Fibrinolíticos/química , Membranas Artificiais , Adsorção , Trombose/prevenção & controle , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Polímeros/química
15.
Inflammation ; 46(5): 1602-1611, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37490221

RESUMO

Liver injury is a common pathological basis for various liver diseases. Chronic liver injury is often an important initiating factor in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, hepatitis A and E infections are the most common causes of acute liver injury worldwide, whereas drug toxicity (paracetamol overdose) in the USA and part of Western Europe. In recent years, chronic liver injury has become a common disease that harms human health. Meanwhile, the main causes of chronic liver injury are viral hepatitis (B, C) and long-term alcohol consumption worldwide. During the process of liver injury, massive inflammatory cytokines are stimulated by these hazardous factors, leading to a systemic inflammatory response syndrome, followed by a compensatory anti-inflammatory response, which causes immune cell dysfunction and sepsis, subsequent multi-organ failure. Cytokine release and immune cell infiltration-mediated aseptic inflammation are the most important features of the pathobiology of liver failure. From this perspective, diminishing the onset and progression of liver inflammation is of clinical importance in the treatment of liver injury. Although many studies have hinted at the critical role of nerves in regulating inflammation, there largely remains undetermined how hepatic nerves mediate immune inflammation and how the inflammatory factors released by these nerves are involved in the process of liver injury. Therefore, the purpose of this article is to summarize previous studies in the field related to hepatic nerve and inflammation as well as future perspectives on the aforementioned questions. Our findings were presented in three aspects: types of nerve distribution in the liver, how these nerves regulate immunity, and the role of liver nerves in hepatitis and liver failure.


Assuntos
Carcinoma Hepatocelular , Hepatite , Falência Hepática , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Hepatite/metabolismo , Cirrose Hepática/complicações , Inflamação/metabolismo , Falência Hepática/complicações , Falência Hepática/metabolismo , Falência Hepática/patologia , Citocinas/metabolismo
16.
Int Immunopharmacol ; 121: 110512, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343373

RESUMO

The re-emergence of Zika virus (ZIKV) remains a major public health threat that has raised worldwide attention. Accumulating evidence suggests that ZIKV can cause serious pathological changes to the human nervous system, including microcephaly in newborns. Recent studies suggest that metformin, an established treatment for diabetes may play a role in viral infection; however, little is known about the interactions between ZIKV infection and metformin administration. Using fluorescent ZIKV by flow cytometry and immunofluorescence imaging, we found that ZIKV can infect microglia in a dose-dependent manner. Metformin diminished ZIKV replication without the alteration of viral entry and phagocytosis. Our study demonstrated that metformin downregulated ZIKV-induced inflammatory response in microglia in a time- and dose-dependent manner. Our RNA-Seq and qRT-PCR analysis found that type I and III interferons (IFN), such as IFNα2, IFNß1 and IFNλ3 were upregulated in ZIKV-infected cells by metformin treatment, accompanied with the downregulation of GBP4, OAS1, MX1 and ISG15. Together, our results suggest that metformin-mediated modulation in multiple pathways may attribute to restraining ZIKV infection in microglia, which may provide a potential tool to consider for use in unique clinical circumstances.


Assuntos
Metformina , Infecção por Zika virus , Zika virus , Recém-Nascido , Humanos , Microglia , Regulação para Baixo , Replicação Viral
17.
Front Mol Biosci ; 9: 976528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225253

RESUMO

Background: Extracellular vesicles (EVs) were reported to participate in various cellular processes based on the biomolecules, particularly microRNAs. Numerous commercial EVs isolation reagents are available. However, whether these reagents are suitable for separating EVs from the culture medium supernatant supernatant of model cell lines, such as HepG2, and whether the isolated products are suitable for High-throughput sequencing remains unclear. Methods: We examined three commonly used EVs isolation kits: the ExoQuick-TC exosome precipitation solution (EQ), Total Exosome Isolation from cell culture medium (EI), and exoEasy Maxi Kit (EM), to isolate EVs from HepG2 cell culture medium supernatants. EVs were identified based on marker proteins, particle size measurements, and electron microscopy analysis. The total amounts of microRNA and microRNA High-throughput sequencing data quality from EVs isolated by each kit were compared. Results: The total amount of EVs' microRNA isolated from the EI and EM groups were higher than that obtained from the EQ group (EQ/EI: p = 0.036, EI/EM: p = 0.024). High-throughput sequencing data quality evaluation showed that the EI group possessed higher quality than those in the EM group. Conclusion: For the cell culture medium from HepG2, EVs' microRNA isolated by EI reagents might be more suitable for High-throughput sequencing applications.

18.
Am J Transl Res ; 14(2): 798-818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273686

RESUMO

OBJECTIVE: To characterize the clinicopathologic features and to investigate the prognostic nomograms for overall survival (OS) and cancer-specific survival (CSS) in patients with Hepatic malignant vascular tumors (HMVT). METHOD: Patients diagnosed with HMVT between 1973 and 2015 were screened from the Surveillance, Epidemiology, and End Results (SEER) database. The Kaplan-Meier (KM) was used for survival analysis. The univariate and multivariate Cox analyses were performed to identify independent predictors. Furthermore, the prognostic nomograms were established and evaluated. RESULTS: A total of 510 HMVT patients were collected, and randomly divided into HMVT-training (N=308) and validation cohort (N=202) groups. The 3- and 5-year OS for overall HMVT were 21.3% and 19.8%, and the corresponding CSS was 29.8% and 27.7% respectively. Age at diagnosis, grade, tumor size, and histological type were identified as prognostic factors for OS and CSS in patients with HMVT. However, sex was just for predicting CSS, and T stage was only an indicator of OS. These factors were further utilized to construct the nomograms for OS and CSS in the HMVT-training cohort showing credible performance with the C-index of 0.763 and 0.762, respectively. Moreover, the AUC value for 1-, 3-, 5-year OS was 0.873, 0.905 and 0.898, and the corresponding value for CSS was 0.808, 0.794 and 0.788 respectively. Additionally, the calibration curves demonstrated a favorable agreement between the predicted and actual 1-, 3- and 5-year survival rates both in the training and validated cohorts. CONCLUSION: This was the largest population-based study to describe the clinicopathologic characteristics in patients with HMVT. Moreover, we established and validated prognostic nomograms that indicated an accurate prediction for 1-, 3- and 5-year of OS and CSS.

19.
Front Immunol ; 12: 662266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054828

RESUMO

IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.


Assuntos
COVID-19/imunologia , Doenças Transmissíveis/imunologia , Infecções/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Psoríase/imunologia , SARS-CoV-2/fisiologia , Humanos , Terapia de Alvo Molecular
20.
Clin Ther ; 42(3): 439-447, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32070484

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is the seventh most commonly diagnosed cancer and the fourth-leading cause of cancer-related death worldwide. Chronic hepatitis B virus (HBV) is the leading cause of HCC in China. Emerging evidence suggests that long noncoding (lnc)-RNAs are deregulated and are involved in the development of HCC. Our previous study found that HBV X protein can promote HCC by altering lncRNA expression profiles. The purpose of this study was to investigate the expression of the lncRNA semaphorin 6A-antisense RNA 1 (SEMA6A-AS1) and its prognostic value in HBV-related HCC. METHODS: Samples of HCC tissues and adjacent nontumor tissues were collected from patients who were pathologically diagnosed with HBV-related HCC after hepatectomy. Eligible patients had not received preoperative radiotherapy, chemotherapy, or embolotherapy. Real-time quantitative reverse-transcription polymerase chain reaction was performed to evaluate the expression levels of SEMA6A-AS1 in all tissue specimens. The correlations between SEMA6A-AS1 expression and clinicopathologic characteristics were analyzed using the χ2 test and the Fisher exact test. Overall survival curves constructed by the Kaplan-Meier method and univariate analysis made by Cox proportional hazards modeling were used for determining the prognostic significance of SEMA6A-AS1. FINDINGS: Specimens were collected from 47 patients (45 men, 2 women; mean age, 48.4 [10.7] years). SEMA6A-AS1 expression was significantly downregulated in HBV-related HCC tissues compared with that in adjacent noncancerous hepatic tissues (P < 0.01). Low levels of SEMA6A-AS1 were correlated with high α-fetoprotein level (P = 0.002), high Edmondson-Steiner tumor grade (P = 0.047), high tumor node metastasis stage (P = 0.01), capsular invasion (P = 0.005), and poor clinical response (P = 0.002). Additionally, both Kaplan-Meier estimator and univariate Cox regression analysis revealed that low SEMA6A-AS1 expression was significantly associated with poor overall survival (P < 0.05). IMPLICATIONS: The results show that low expression of SEMA6A-AS1 was associated with a poor prognosis in patients with HBV-related HCC. It is necessary to determine the function and mechanism of SEMA6A-AS1 in HCC in order to identify it as a prognostic biomarker and therapeutic target.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , RNA Longo não Codificante , Semaforinas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA