Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(9): 1782-1790, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779927

RESUMO

The morphology of conjugated polymer thin films deposited by the resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) process is related to the emulsion characteristics. However, a fundamental understanding of how and why the emulsion characteristics control the film properties and device performance is yet unclear. We performed all-atom molecular dynamics simulations of emulsions containing a mixture of polyfluorene (PFO) polymer, various primary solvents, secondary solvent, and water. The emulsion properties were then examined as a function of variable primary solvent and correlated with the morphology of deposited PFO thin films. The examination of the explicit interactions between all components of the emulsion indicated that using a primary solvent with a lower solubility-in-water and a higher non-bonded interaction energy ratio, between the solvent, polymer, and water in the emulsion recipe, produced the best result with smoother and denser films. Additionally, our simulation results are consistent with the AFM experimental results, indicating that interactions driven by trichlorobenzene (TCB) primary solvent within the emulsion are responsible for high-quality, smooth, and continuous thin film surfaces. Overall, this study can support the choice of a suitable primary solvent and provides the computational framework for predictions of new recipes for polymeric emulsion systems.

2.
Proc Natl Acad Sci U S A ; 117(52): 32891-32901, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33323484

RESUMO

Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.

3.
Biomacromolecules ; 23(9): 3663-3677, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948425

RESUMO

Higher plants synthesize cellulose using membrane-bound, six-lobed cellulose synthase complexes, each lobe containing trimeric cellulose synthases (CESAs). Although molecular biology reports support heteromeric trimers composed of different isoforms, a homomeric trimer was reported for in vitro studies of the catalytic domain of CESA1 of Arabidopsis (AtCESA1CatD) and confirmed in cryoEM structures of full-length CESA8 and CESA7 of poplar and cotton, respectively. In both structures, a small portion of the plant-conserved region (P-CR) forms the only contacts between catalytic domains of the monomers. We report inter-subunit lysine-crosslinks that localize to the small P-CR, negative-stain EM structure, and modeling data for homotrimers of AtCESA1CatD. Molecular dynamics simulations for AtCESA1CatD trimers based on the CESA8 cryoEM structure were stable and dependent upon a small set of residue contacts. The results suggest that homomeric CESA trimers may be important for the synthesis of primary and secondary cell walls and identify key residues for future mutagenic studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Parede Celular , Celulose , Glucosiltransferases/química , Glucosiltransferases/genética
4.
Angew Chem Int Ed Engl ; 61(14): e202115547, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35037351

RESUMO

Peptide-polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence-dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self-assembly remains challenging. We herein present a systematic study of PPA structure-assembly relationships. PPAs containing oligo(ethyl acrylate) and random-coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self-assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials.


Assuntos
Peptídeos , Polímeros , Biomimética , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Peptídeos/química , Polímeros/química
5.
Langmuir ; 37(9): 2913-2927, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621461

RESUMO

We synthesized novel amphiphilic hyperbranched polymers (HBPs) with variable contents of weakly ionically tethered thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) macrocations in contrast to traditional covalent linking. Their assembling behavior was studied below and above the lower critical solution temperature (LCST). The HBPs underwent a morphological transition under changing temperature and ionic strength due to the LCST transition of PNIPAM and the reduction in the ionization degree of terminal ionic groups, respectively. We suggest that, in contrast to traditional branched polymers, ionically linked PNIPAM macrocations can reversibly disassociate from the sulfonate groups and form mobile coronas, endowing the dynamic micellar morphologies. In addition, assembly at the air-water interface confined PNIPAM macrocations and resulted in the formation of heterogeneous Langmuir-Blodgett (LB) monolayers with diverse surface morphologies for different peripheral compositions with circular domains formed in the condensed state. The HBPs with 25% PNIPAM showed larger and more stable circular domains that were partially preserved at high compression than those of HBPs with 50% PNIPAM. Moreover, the LB monolayers showed variable surface mechanical and surface charge distribution, which can be attributed to net dipole redistribution caused by the behavior of mobile PNIPAM macrocations and core sulfonate groups.

6.
J Chem Inf Model ; 61(4): 1745-1761, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33729778

RESUMO

The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10-5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Solventes , Eletricidade Estática , Incerteza
7.
Chemistry ; 26(44): 9982-9990, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32468601

RESUMO

Effective diagnosis of disease and its progression can be aided by 19 F magnetic resonance imaging (MRI) techniques. Specifically, the inherent sensitivity of the spin-lattice relaxation time (T1 ) of 19 F nuclei to oxygen partial pressure makes 19 F MRI an attractive non-invasive approach to quantify tissue oxygenation in a spatiotemporal manner. However, there are only few materials with the adequate sensitivity to be used as oxygen-sensitive 19 F MRI agents at clinically relevant field strengths. Motivated by the limitations in current technologies, we report highly fluorinated monomers that provide a platform approach to realize water-soluble, partially fluorinated copolymers as 19 F MRI agents with the required sensitivity to quantify solution oxygenation at clinically relevant magnetic field strengths. The synthesis of a systematic library of partially fluorinated copolymers enabled a comprehensive evaluation of copolymer structure-property relationships relevant to 19 F MRI. The highest-performing material composition demonstrated a signal-to-noise ratio that corresponded to an apparent 19 F density of 220 mm, which surpasses the threshold of 126 mm 19 F required for visualization on a three Tesla clinical MRI. Furthermore, the T1 of these high performing materials demonstrated a linear relationship with solution oxygenation, with oxygen sensitivity reaching 240×10-5  mmHg-1 s-1 . The relationships between material composition and 19 F MRI performance identified herein suggest general structure-property criteria for the further improvement of modular, water-soluble 19 F MRI agents for quantifying oxygenation in environments relevant to medical imaging.


Assuntos
Flúor/análise , Flúor/química , Halogenação , Imageamento por Ressonância Magnética , Oxigênio/análise , Oxigênio/química , Polímeros/química , Pressão Parcial
8.
Langmuir ; 36(4): 931-938, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917584

RESUMO

Understanding of how to integrate DNA molecules with graphene materials is important for the development of biosensors and biomolecular logic circuits. For some of these applications, controlling DNA structural conformation on the graphene substrate is critically important and can be achieved through the use of self-assembled monolayers. Here, we performed all-atom molecular dynamics simulations to understand how various 1-octadecylamine (ODA) coatings of the graphene surface affect the conformation of double-stranded DNA (dsDNA) on the surface. The simulation results demonstrated that dsDNA structures become more stable as ODA concentration increases due to the formation of DNA-ODA hydrogen bonds and reduction of DNA-surface interactions, which aid in retaining internal DNA interactions. Specifically, the interaction of ODA molecules with DNA prevents nucleobases from forming π-π stacking interactions with the surface. Some dsDNA conformations, such as sharp kinks or unwinding, can occur more frequently in DNA with A-T sequences due to weaker pairing interactions than with G-C sequences. Furthermore, our results conclude that both DNA sequence and ODA concentration play an essential role in experimentally observed conformational changes of DNA on the graphene surface.


Assuntos
Aminas/química , DNA/química , Grafite/química , Tensoativos/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Plant Cell ; 28(1): 202-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672067

RESUMO

Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na(+) ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na(+)-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na(+) ion binding site. Our data enhance the understanding of the permeation functions of Bot1.


Assuntos
Hordeum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Ânions/metabolismo , Sítios de Ligação , Boratos/metabolismo , Sistema Livre de Células , Simulação por Computador , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Permeabilidade , Pichia/metabolismo , Proteínas de Plantas/química , Dobramento de Proteína , Multimerização Proteica , Triticum/metabolismo
10.
Plant Cell ; 27(10): 2926-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26443667

RESUMO

Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Membrana Celular/enzimologia , Clatrina/metabolismo , Endocitose , Genes Reporter , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Transporte Proteico , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura
11.
Biomacromolecules ; 19(8): 3525-3535, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011192

RESUMO

We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.


Assuntos
DNA de Cadeia Simples/síntese química , Desoxirribonucleases/metabolismo , Biocatálise , DNA Nucleotidilexotransferase/metabolismo , DNA de Cadeia Simples/química , Hidrólise , Ligação Proteica , Nucleosídeos de Purina/química
12.
Biomacromolecules ; 19(7): 2496-2505, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665334

RESUMO

Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( Tt). However, poly(VPGVG) resolubilizes upon cooling below its Tt, whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the Tt. The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above Tt, where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).


Assuntos
Elastina/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Transição de Fase , Domínios Proteicos , Temperatura
13.
Biomacromolecules ; 19(2): 298-306, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29195275

RESUMO

A powerful tool for controlling interfacial properties and molecular architecture relies on the tailored adsorption of stimuli-responsive block copolymers onto surfaces. Here, we use computational and experimental approaches to investigate the adsorption behavior of thermally responsive polypeptide block copolymers (elastin-like polypeptides, ELPs) onto silica surfaces, and to explore the effects of surface affinity and micellization on the adsorption kinetics and the resultant polypeptide layers. We demonstrate that genetic incorporation of a silica-binding peptide (silaffin R5) results in enhanced adsorption of these block copolymers onto silica surfaces as measured by quartz crystal microbalance and ellipsometry. We find that the silaffin peptide can also direct micelle adsorption, leading to close-packed micellar arrangements that are distinct from the sparse, patchy arrangements observed for ELP micelles lacking a silaffin tag, as evidenced by atomic force microscopy measurements. These experimental findings are consistent with results of dissipative particle dynamics simulations. Wettability measurements suggest that surface immobilization hampers the temperature-dependent conformational change of ELP micelles, while adsorbed ELP unimers (i.e., unmicellized block copolymers) retain their thermally responsive property at interfaces. These observations provide guidance on the use of ELP block copolymers as building blocks for fabricating smart surfaces and interfaces with programmable architecture and functionality.


Assuntos
Elastina/química , Micelas , Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Dióxido de Silício/química , Adsorção , Simulação de Dinâmica Molecular , Molhabilidade
14.
J Integr Plant Biol ; 60(6): 481-497, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380536

RESUMO

Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette-type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore-negative phenotype of a ppcesa5 knockout line. Thus, non-interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional class-specificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class-specific sequences without selection for class-specific function.


Assuntos
Bryopsida/enzimologia , Glucosiltransferases/química , Glucosiltransferases/classificação , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência de Aminoácidos , Celulose/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Filogenia
15.
Angew Chem Int Ed Engl ; 57(28): 8508-8513, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665253

RESUMO

Constructing advanced functional nanomaterials with pre-designed organized morphologies from low-dimension synthetic and biological components is challenging. Herein, we report an efficient and universal amphiphilicity-driven assembly strategy to construct "hairy" flexible hybrid nanosheets with a 1D cellulose nanofibers (CNFs) net conformally wrapped around 2D graphene oxide (GO) monolayers. This interface-driven bio-synthetic assembly is facilitated by tailoring the surface chemistry of flexible GO sheets, resulting in individual sheets tightly surrounded by dense conformal nanocellulose network. The mechanical stability of the products far exceeds the compressive instability limits of both individual components. Additionally, the CNF network significantly enhances the wetting ability of initial hydrophobic reduced GO nanosheets, allowing fast water transport combined with high filtration efficiency.

16.
Bioconjug Chem ; 28(1): 3-10, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27776214

RESUMO

Nanoparticles (NPs) play increasingly important roles in nanotechnology and nanomedicine in which nanoparticle surface chemistry allows for control over interactions with other nanoparticles and biomolecules. In particular, for applications in drug and gene delivery, a fundamental understanding of the NP-nucleic acid interface allows for development of more efficient and effective nanoparticle carriers. Computational modeling can provide insights of processes occurring at the inorganic NP-nucleic interface in detail that is difficult to access by experimental methods. With recent advances such as the use of graphics processing units (GPUs) for simulations, computational modeling has the potential to give unprecedented insight into inorganic-biological interfaces via the examination of increasingly large and complex systems. In this Topical Review, we briefly review computational methods relevant to the interactions of inorganic NPs and nucleic acids and highlight recent insights obtained from various computational methods that were applied to studies of inorganic nanoparticle-nanoparticle and nanoparticle-nucleic acid interfaces.


Assuntos
Modelos Moleculares , Nanopartículas/química , Ácidos Nucleicos/química , Ligantes , Solventes/química
17.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28895249

RESUMO

A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self-assembled from BAB single-strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self-assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm-like or hamburger-shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self-assembly of ssDNA triblocks.


Assuntos
DNA de Cadeia Simples/química , Polieletrólitos/química , Cloreto de Sódio/química , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Micelas , Concentração Osmolar , Solventes/química
18.
Biomacromolecules ; 17(1): 111-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26595324

RESUMO

The physical origin of the lower critical solution temperature (LCST) behavior of a variety of fluids, including elastin-like polypeptides (ELPs), has been studied for the past few decades. As is the case for polymer solutions, LCST behavior of ELPs is invariably reported for large systems of molecules and is considered evidence for collective behavior. In contrast, we find evidence for properties changes associated with LCST behavior in a single molecule by performing long atomic-level molecular dynamics simulation on the ELP sequences (Val-Pro-Gly-Val-Gly)n for four different length peptides over a wide range of temperatures. We observe a sharp transition in the number of hydrogen bonds between peptide and water and in the number of water molecules within the first hydration shell as temperature rises; this is used to locate the transition temperature. The dependence of the transition temperatures of ELPs on their lengths agrees well with experiments in that both have the same power law exponents. Our simulations reveal that the tendency for pentamers (VPGVG) in ELPs of all lengths to lose H-bonds with water or to gain H-bonds with themselves as temperature rises is independent of the length of the chain in which they are embedded. Thus, the transition temperature of ELPs in pure water is determined by two factors: the hydrogen bonding tendency of the pentamers and the number of pentamers per ELP. Moreover, the hydrogen bonding tendency of pentamers depends only on their sequences, not on the ELP chain length.


Assuntos
Elastina/química , Oligopeptídeos/química , Peptídeos/química , Temperatura Baixa , Ligação de Hidrogênio , Soluções Farmacêuticas/química , Temperatura de Transição , Água/química
19.
Phys Chem Chem Phys ; 18(32): 22062-9, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27306260

RESUMO

In order to understand how cations affect the structural changes and enzyme activity of Lipase B from Candida antarctica, we performed all-atom molecular dynamics simulations of CALB in four types of ionic liquids (ILs) with varying sizes of imidazolium cations and correlated these results with the experimentally determined CALB activity. The imidazolium cations under study differ in the alkyl tail length in the following order: [Emim](+) < [Bmim](+) < [Hmim](+) < [Omim](+). We observed that the best enzyme activity and structural stability of CALB are obtained in [Bmim][TfO] and [Hmim][TfO]. In contrast, in [Emim][TfO], bonding of [TfO](-) to LYS-290 disrupts the interactions between LYS-290 and ILE-285, which leads to a closed catalytic gate conformation with low accessibility of substrates to the catalytic triad. In [Omim][TfO], strong hydrophobic interactions between [Omim](+) and LEU-278 result in a significant loss of the secondary structure of the α-10 helix and cause the exposure of the catalytic triad to ILs, which affects the stability of the catalytic triad and consequently deteriorates the enzyme activity. Overall, our study indicates that a high ion coordination number ([Emim][TfO]) or the presence of a long hydrophobic tail ([Omim][TfO]) can facilitate ion-protein interactions that cause structural distortions and a decrease in CALB enzyme activity in ILs.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Simulação de Dinâmica Molecular , Catálise , Cátions , Interações Hidrofóbicas e Hidrofílicas
20.
Proc Natl Acad Sci U S A ; 110(18): 7512-7, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23592721

RESUMO

A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded ß-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose-synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/química , Gossypium/enzimologia , Modelos Moleculares , Bactérias/enzimologia , Biologia Computacional , Citosol/enzimologia , Glucosiltransferases/genética , Mutação/genética , Fenótipo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA