Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Immunol ; 210(12): 2038-2049, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133337

RESUMO

Immunofluorescence histology is commonly used to study immune cells in tissues where the number of fluorescence parameters is normally limited to four or less. This makes it impossible to interrogate multiple subsets of immune cells in tissue with the same precision as flow cytometry. The latter, however, dissociates tissues and loses spatial information. To bridge the gap between these technologies, we developed a workflow to expand the number of fluorescence parameters that can be imaged on widely available microscopes. We instituted a method for identifying single cells in tissue and exporting the data for flow cytometry-based analysis. This histoflow cytometry technique successfully separates spectrally overlapping dyes and identifies similar numbers of cells in tissue sections as manual cell counts. Populations identified through flow cytometry-like gating strategies are mapped to the original tissue to spatially localize gated subsets. We applied histoflow cytometry to immune cells in the spinal cords of mice with experimental autoimmune encephalomyelitis. We ascertained that B cells, T cells, neutrophils, and phagocytes differed in their frequencies in CNS immune cell infiltrates and were increased relative to healthy controls. Spatial analysis determined that B cells and T cells/phagocytes preferentially localized to CNS barriers and parenchyma, respectively. By spatially mapping these immune cells, we inferred their preferred interacting partners within immune cell clusters. Overall, we demonstrate the ease and utility of histoflow cytometry, which expands the number of fluorescent channels used in conventional immunofluorescence and enables quantitative cytometry and spatial localization of histological analyses.


Assuntos
Encefalomielite Autoimune Experimental , Fagócitos , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Linfócitos T , Neutrófilos/patologia , Análise de Célula Única/métodos , Citometria de Fluxo/métodos
2.
J Neurosci ; 43(25): 4725-4737, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37208177

RESUMO

Aging is a significant risk factor associated with the progression of CNS neurodegenerative diseases including multiple sclerosis (MS). Microglia, the resident macrophages of the CNS parenchyma, are a major population of immune cells that accumulate in MS lesions. While they normally regulate tissue homeostasis and facilitate the clearance of neurotoxic molecules including oxidized phosphatidylcholines (OxPCs), their transcriptome and neuroprotective functions are reprogrammed by aging. Thus, determining the factors that instigate aging associated microglia dysfunction can lead to new insights for promoting CNS repair and for halting MS disease progression. Through single-cell RNA sequencing (scRNAseq), we identified Lgals3, which encodes for galectin-3 (Gal3), as an age upregulated gene by microglia responding to OxPC. Consistently, excess Gal3 accumulated in OxPC and lysolecithin-induced focal spinal cord white matter (SCWM) lesions of middle-aged mice compared with young mice. Gal3 was also elevated in mouse experimental autoimmune encephalomyelitis (EAE) lesions and more importantly in MS brain lesions from two male and one female individuals. While Gal3 delivery alone into the mouse spinal cord did not induce damage, its co-delivery with OxPC increased cleaved caspase 3 and IL-1ß within white matter lesions and exacerbated OxPC-induced injury. Conversely, OxPC-mediated neurodegeneration was reduced in Gal3-/- mice compared with Gal3+/+ mice. Thus, Gal3 is associated with increased neuroinflammation and neurodegeneration and its overexpression by microglia/macrophages may be detrimental for lesions within the aging CNS.SIGNIFICANCE STATEMENT Aging accelerates the progression of neurodegenerative diseases such as multiple sclerosis (MS). Understanding the molecular mechanisms of aging that increases the susceptibility of the CNS to damage could lead to new strategies to manage MS progression. Here, we highlight that microglia/macrophage-associated galectin-3 (Gal3) was upregulated with age exacerbated neurodegeneration in the mouse spinal cord white matter (SCWM) and in MS lesions. More importantly, co-injection of Gal3 with oxidized phosphatidylcholines (OxPCs), which are neurotoxic lipids found in MS lesions, caused greater neurodegeneration compared with injection of OxPC alone, whereas genetic loss of Gal3 reduced OxPC damage. These results demonstrate that Gal3 overexpression is detrimental to CNS lesions and suggest its deposition in MS lesions may contribute to neurodegeneration.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/patologia , Galectina 3/genética , Fosfatidilcolinas , Encefalomielite Autoimune Experimental/patologia , Medula Espinal , Microglia/fisiologia
3.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627787

RESUMO

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Assuntos
Doenças do Sistema Nervoso Central , Receptores Nucleares Órfãos , Humanos , Receptores X do Fígado , Receptores Nucleares Órfãos/metabolismo , Sistema Nervoso Central/metabolismo , Inflamação , Doenças do Sistema Nervoso Central/tratamento farmacológico
4.
Neurobiol Dis ; 186: 106282, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683956

RESUMO

Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Doenças Neuroinflamatórias , Hemorragia Cerebral , Matriz Extracelular
5.
Cancer Immunol Immunother ; 72(3): 733-742, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36194288

RESUMO

BACKGROUND: The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS: We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS: Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION: MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT: We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.


Assuntos
Glioblastoma , Glioma , Niacina , Camundongos , Animais , Monócitos/patologia , Glioma/patologia , Modelos Animais , Imageamento por Ressonância Magnética/métodos
6.
Eur J Neurol ; 30(1): 187-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214614

RESUMO

BACKGROUND: In a recent trial, hydroxychloroquine (HCQ) treatment reduced the expected rate of disability worsening at 18 months in primary progressive multiple sclerosis (PPMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in multiple sclerosis. METHODS: We measured NfL and GFAP levels in serum samples from 39 patients with inactive PPMS included in a phase II clinical trial of HCQ treatment in PPMS at multiple time points over 18 months, and investigated the association of these biomarkers with clinical disability at screening and during follow-up. Screening and 12-month retinal nerve fiber layer (RNFL) thickness was also recorded and analyzed. RESULTS: NfL and GFAP levels increased over time, but only significantly from screening to month 6. NfL and GFAP levels did not significantly increase from month 6 up to month 18. At screening, NfL and GFAP levels did not correlate with the Expanded Disability Status Scale (EDSS), and GFAP but not NfL modestly correlated with Timed 25-Foot Walk test (T25FW). Screening NfL and GFAP levels did not predict disability worsening (≥20% worsening on the T25FW) at month 18. RNFL thickness decreased significantly from screening to month 12 and independently predicted disability worsening. CONCLUSIONS: In this cohort of people with inactive PPMS, HCQ treatment attenuated the increase of NfL and GFAP after 6 months of treatment and up to 18 months of follow-up, suggesting a treatment effect of HCQ over these biomarkers. RNFL thickness, a marker of neuroaxonal atrophy, was associated with disability worsening, and should be explored further as a prognostic marker in this population.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Biomarcadores , Proteína Glial Fibrilar Ácida , Hidroxicloroquina/uso terapêutico , Filamentos Intermediários , Esclerose Múltipla/diagnóstico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Proteínas de Neurofilamentos , Ensaios Clínicos Fase II como Assunto
7.
J Neurosci ; 41(15): 3366-3385, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33712513

RESUMO

Excessive inflammation within the CNS is injurious, but an immune response is also required for regeneration. Macrophages and microglia adopt different properties depending on their microenvironment, and exposure to IL4 and IL13 has been used to elicit repair. Unexpectedly, while LPS-exposed macrophages and microglia killed neural cells in culture, the addition of LPS to IL4/IL13-treated macrophages and microglia profoundly elevated IL10, repair metabolites, heparin binding epidermal growth factor trophic factor, antioxidants, and matrix-remodeling proteases. In C57BL/6 female mice, the generation of M(LPS/IL4/IL13) macrophages required TLR4 and MyD88 signaling, downstream activation of phosphatidylinositol-3 kinase/mTOR and MAP kinases, and convergence on phospho-CREB, STAT6, and NFE2. Following mouse spinal cord demyelination, local LPS/IL4/IL13 deposition markedly increased lesional phagocytic macrophages/microglia, lactate and heparin binding epidermal growth factor, matrix remodeling, oligodendrogenesis, and remyelination. Our data show that a prominent reparative state of macrophages/microglia is generated by the unexpected integration of pro- and anti-inflammatory activation cues. The results have translational potential, as the LPS/IL4/IL13 mixture could be locally applied to a focal CNS injury to enhance neural regeneration and recovery.SIGNIFICANCE STATEMENT The combination of LPS and regulatory IL4 and IL13 signaling in macrophages and microglia produces a previously unknown and particularly reparative phenotype devoid of pro-inflammatory neurotoxic features. The local administration of LPS/IL4/IL13 into spinal cord lesion elicits profound oligodendrogenesis and remyelination. The careful use of LPS and IL4/IL13 mixture could harness the known benefits of neuroinflammation to enable repair in neurologic insults.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Transdução de Sinais , Regeneração da Medula Espinal , Medula Espinal/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Inflamação , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição STAT6/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
Curr Opin Neurol ; 35(3): 299-306, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35674072

RESUMO

PURPOSE OF REVIEW: Microglia normally protects the central nervous system (CNS) against insults. However, their persistent activation in multiple sclerosis (MS) contributes to injury. Here, we review microglia activation in MS and their detection using positron emission tomography (PET). RECENT FINDINGS: During lesion evolution and the progression of MS, microglia activity may contribute to neurotoxicity through the release of pro-inflammatory cytokines, reactive oxidative species, proteases and glutamate. A means to detect and monitor microglia activation in individuals living with MS is provided by positron emission tomography (PET) imaging using the mitochondrial 18-kDa translocator protein (TSPO) ligand. TSPO PET imaging shows increased microglial activation within the normal appearing white matter that precedes radiological signs of neurodegeneration measured by T2 lesion enlargement. PET-detected microglia activation increases with progression of MS. These findings demand the use of CNS penetrant inhibitors that affect microglia. Such therapies may include hydroxychloroquine that is recently reported in a small study to reduce the expected progression in primary progressive MS, and Bruton's tyrosine kinase inhibitors for which there are now eleven Phase 3 registered trials in MS. SUMMARY: Microglial activation drives injury in MS. PET imaging with microglia-specific ligands offer new insights into progression of MS and as a monitor for treatment responses.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Ligantes , Microglia/metabolismo , Esclerose Múltipla/patologia , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Substância Branca/patologia
9.
Mult Scler ; 28(8): 1167-1172, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33124511

RESUMO

While people with multiple sclerosis (PwMS) historically were advised to avoid physical activity to reduce symptoms such as fatigue, they are now encouraged to remain active and to enlist in programs of exercise. However, despite an extensive current literature that exercise not only increases physical well-being but also their cognition and mental health, many PwMS are not meeting recommended levels of exercise. Here, we emphasize the impact and mechanisms of exercise on functional and structural changes to the brain, including improved connectome, neuroprotection, neurogenesis, oligodendrogenesis, and remyelination. We review evidence from animal models of multiple sclerosis (MS) that exercise protects and repairs the brain, and provide supportive data from clinical studies of PwMS. We introduce the concept of MedXercise, where exercise provides a brain milieu particularly conducive for a brain regenerative medication to act upon. The emphasis on exercise improving brain functions and repair should incentivize PwMS to remain physically active.


Assuntos
Esclerose Múltipla , Animais , Encéfalo , Exercício Físico , Terapia por Exercício , Fadiga , Humanos
10.
Mult Scler ; 28(13): 2081-2089, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35848622

RESUMO

BACKGROUND: In the trial of Minocycline in Clinically Isolated Syndrome (MinoCIS), minocycline significantly reduced the risk of conversion to clinically definite multiple sclerosis (CDMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in MS, and minocycline modulates matrix metalloproteinases (MMPs). OBJECTIVE: To assess the value of blood NfL and GFAP as a biomarker of baseline and future disease activity and its utility to monitor treatment response in minocycline-treated patients with clinically isolated syndrome (CIS). METHODS: We measured NfL, GFAP, and MMPs in blood samples from 96 patients with CIS from the MinoCIS study and compared biomarkers with clinical and radiologic characteristics and outcome. RESULTS: At baseline, NfL levels correlated with T2 lesion load and number of gadolinium-enhancing lesions. Baseline NfL levels predicted conversion into CDMS at month 6. GFAP levels at baseline were correlated with T2 lesion volume. Minocycline treatment significantly increased NfL levels at 3 months but not at 6 months, and decreased GFAP levels at month 6. Minocycline decreased MMP-7 concentrations at month 1. DISCUSSION: Blood NfL levels are associated with measures of disease activity in CIS and have prognostic value. Minocycline increased NfL levels at month 3, but reduced GFAP and MMP-7 levels.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Biomarcadores , Doenças Desmielinizantes/tratamento farmacológico , Gadolínio , Proteína Glial Fibrilar Ácida , Humanos , Filamentos Intermediários , Metaloproteinase 7 da Matriz , Minociclina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Proteínas de Neurofilamentos
11.
Neurochem Res ; 47(8): 2383-2395, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35608790

RESUMO

Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to be a vital inflammatory mediator in several neurological and neurodegenerative diseases. However, the role of EMMPRIN in intracerebral hemorrhage (ICH) remains unexplored. In this study, we aimed to exploit a highly selective monoclonal anti-EMMPRIN antibody to functionally inhibit EMMPRIN activity and thus that of MMPs as the downstream effector. To induce ICH pathology, adult C57BL/6 male mice were injected with collagenase type VII or saline as control into the right basal ganglia and were euthanized at different time points. The anti-EMMPRIN monoclonal antibody was intravenously injected once daily for 3 days to block the expression of EMMPRIN initiating at 4 h post-ICH. Western blot and immunofluorescence analysis results revealed that EMMPRIN expression was significantly increased surrounding the hematoma at 3 and 7 d time points after ICH when compared to the saline treated control group. EMMPRIN expression was co-localized with GFAP (astrocytes) and Iba1 (microglia) at 3 d time point post-ICH, but not in the control group mice. The co-localization of EMMPRIN with CD31 in endothelial cells occurred in both groups and was higher in the ICH brain. However, EMMPRIN expression was not detected in neurons from either group. The inhibition of EMMPRIN reduced the expression of MMP-9, the number of infiltrated neutrophils, the degree of brain injury and promoted neurological recovery after ICH. In conclusion, EMMPRIN could mediate the upregulation of MMP-9 and exacerbate neurological dysfunction in a mouse model of experimental ICH. Furthermore, blocking EMMPRIN reduced brain injury and subsequently promoted neurological recovery in ICH mice brains. These outcomes highlight that inhibition of EMMPRIN can be a potential therapeutic intervention strategy to regulate MMP-9's pathological roles during ICH.


Assuntos
Basigina , Lesões Encefálicas , Hemorragia Cerebral , Metaloproteinase 9 da Matriz , Animais , Basigina/metabolismo , Lesões Encefálicas/patologia , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
12.
Brain ; 144(7): 1958-1973, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33889940

RESUMO

Remyelination failure contributes to axonal loss and progression of disability in multiple sclerosis. The failed repair process could be due to ongoing toxic neuroinflammation and to an inhibitory lesion microenvironment that prevents recruitment and/or differentiation of oligodendrocyte progenitor cells into myelin-forming oligodendrocytes. The extracellular matrix molecules deposited into lesions provide both an altered microenvironment that inhibits oligodendrocyte progenitor cells, and a fuel that exacerbates inflammatory responses within lesions. In this review, we discuss the extracellular matrix and where its molecules are normally distributed in an uninjured adult brain, specifically at the basement membranes of cerebral vessels, in perineuronal nets that surround the soma of certain populations of neurons, and in interstitial matrix between neural cells. We then highlight the deposition of different extracellular matrix members in multiple sclerosis lesions, including chondroitin sulphate proteoglycans, collagens, laminins, fibronectin, fibrinogen, thrombospondin and others. We consider reasons behind changes in extracellular matrix components in multiple sclerosis lesions, mainly due to deposition by cells such as reactive astrocytes and microglia/macrophages. We next discuss the consequences of an altered extracellular matrix in multiple sclerosis lesions. Besides impairing oligodendrocyte recruitment, many of the extracellular matrix components elevated in multiple sclerosis lesions are pro-inflammatory and they enhance inflammatory processes through several mechanisms. However, molecules such as thrombospondin-1 may counter inflammatory processes, and laminins appear to favour repair. Overall, we emphasize the crosstalk between the extracellular matrix, immune responses and remyelination in modulating lesions for recovery or worsening. Finally, we review potential therapeutic approaches to target extracellular matrix components to reduce detrimental neuroinflammation and to promote recruitment and maturation of oligodendrocyte lineage cells to enhance remyelination.


Assuntos
Encéfalo/patologia , Matriz Extracelular/patologia , Inflamação/patologia , Esclerose Múltipla/patologia , Remielinização/fisiologia , Humanos
13.
Brain ; 144(1): 162-185, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33313801

RESUMO

Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1ß1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1ß1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1ß1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1ß1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1ß1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1ß1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1ß1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1ß1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1ß1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.


Assuntos
Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neuregulina-1/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Mielite/imunologia , Mielite/metabolismo , Mielite/patologia , Medula Espinal/imunologia
14.
Nature ; 530(7591): 434-40, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26886799

RESUMO

Regulatory T cells hold promise as targets for therapeutic intervention in autoimmunity, but approaches capable of expanding antigen-specific regulatory T cells in vivo are currently not available. Here we show that systemic delivery of nanoparticles coated with autoimmune-disease-relevant peptides bound to major histocompatibility complex class II (pMHCII) molecules triggers the generation and expansion of antigen-specific regulatory CD4(+) T cell type 1 (TR1)-like cells in different mouse models, including mice humanized with lymphocytes from patients, leading to resolution of established autoimmune phenomena. Ten pMHCII-based nanomedicines show similar biological effects, regardless of genetic background, prevalence of the cognate T-cell population or MHC restriction. These nanomedicines promote the differentiation of disease-primed autoreactive T cells into TR1-like cells, which in turn suppress autoantigen-loaded antigen-presenting cells and drive the differentiation of cognate B cells into disease-suppressing regulatory B cells, without compromising systemic immunity. pMHCII-based nanomedicines thus represent a new class of drugs, potentially useful for treating a broad spectrum of autoimmune conditions in a disease-specific manner.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Antígenos CD11/imunologia , Diferenciação Celular , Citocinas/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapêutico , Especificidade de Órgãos , Prevalência , Solubilidade , Linfócitos T Reguladores/citologia
15.
J Neurosci ; 40(44): 8587-8600, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33060175

RESUMO

Age is a critical risk factor for many neurologic conditions, including progressive multiple sclerosis. Yet the mechanisms underlying the relationship are unknown. Using lysolecithin-induced demyelinating injury to the mouse spinal cord, we characterized the acute lesion and investigated the mechanisms of increased myelin and axon damage with age. We report exacerbated myelin and axon loss in middle-aged (8-10 months of age) compared with young (6 weeks of age) female C57BL/6 mice by 1-3 d of lesion evolution in the white matter. Transcriptomic analysis linked elevated injury to increased expression of Cybb, the gene encoding the catalytic subunit of NADPH oxidase gp91phox. Immunohistochemistry in male and female Cx3cr1CreER/+:Rosa26tdTom/+ mice for gp91phox revealed that the upregulation in middle-aged animals occurred primarily in microglia and not infiltrated monocyte-derived macrophages. Activated NADPH oxidase generates reactive oxygen species and elevated oxidative damage was corroborated by higher malondialdehyde immunoreactivity in lesions from middle-aged compared with young mice. From a previously conducted screen for generic drugs with antioxidant properties, we selected the antihypertensive CNS-penetrant medication indapamide for investigation. We report that indapamide reduced superoxide derived from microglia cultures and that treatment of middle-aged mice with indapamide was associated with a decrease in age-exacerbated lipid peroxidation, demyelination and axon loss. In summary, age-exacerbated acute injury following lysolecithin administration is mediated in part by microglia NADPH oxidase activation, and this is alleviated by the CNS-penetrant antioxidant, indapamide.SIGNIFICANCE STATEMENT Age is associated with an increased risk for the development of several neurologic conditions including progressive multiple sclerosis, which is represented by substantial microglia activation. We demonstrate that in the lysolecithin demyelination model in young and middle-aged mice, the latter group developed greater acute axonal and myelin loss attributed to elevated oxidative stress through NADPH oxidase in lineage-traced microglia. We thus used a CNS-penetrant generic medication used in hypertension, indapamide, as we found it to have antioxidant properties in a previous drug screen. Following lysolecithin demyelination in middle-aged mice, indapamide treatment was associated with decreased oxidative stress and axon/myelin loss. We propose indapamide as a potential adjunctive therapy in aging-associated neurodegenerative conditions such as Alzheimer's disease and progressive multiple sclerosis.


Assuntos
Envelhecimento/fisiologia , Anti-Hipertensivos/farmacologia , Axônios/patologia , Indapamida/farmacologia , Microglia/metabolismo , Bainha de Mielina/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Medicamentos Genéricos , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/biossíntese , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , Transcriptoma
16.
Carcinogenesis ; 42(6): 864-873, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33608694

RESUMO

Biological rhythms regulate physiological activities. Shiftwork disrupts normal circadian rhythms and may increase the risk of cancer through unknown mechanisms. To mimic environmental light/dark changes encountered by shift workers, a protocol called 'chronic jet lag (CJL)' induced by repeatedly shifting light-dark cycles has been used. Here, we subjected mice to CJL by advancing light-dark cycle by 6 h every 2 days, and conducted RNA sequencing to analyze the expression profile and molecular signature in the brain areas of prefrontal cortex and nucleus accumbens. We also performed positron emission tomography (PET) imaging to monitor changes related to glucose metabolism in brain. Our results reveal systematic reprogramming of gene expression associated with cancer-related pathways and metabolic pathways in prefrontal cortex and nucleus accumbens. PET imaging indicates that glucose uptake level was significantly reduced in whole brain as well as the individual brain regions. Moreover, qPCR analysis describes that the expression levels of cancer-related genes were altered in prefrontal cortex and nucleus accumbens. Overall, these results suggest a molecular and metabolic link with CJL-mediated cancer risk, and generate hypotheses on how CJL increases the susceptibility to cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Síndrome do Jet Lag/complicações , Núcleo Accumbens/patologia , Fotoperíodo , Córtex Pré-Frontal/patologia , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Doença Crônica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , RNA-Seq
17.
BMC Neurol ; 21(1): 418, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706670

RESUMO

BACKGROUND: Neurological disability progression occurs across the spectrum of people living with multiple sclerosis (MS). Although there are a handful of disease-modifying treatments approved for use in progressive phenotypes of MS, there are no treatments that substantially modify the course of clinical progression in MS. Characterizing the determinants of clinical progression can inform the development of novel therapeutic agents and treatment approaches that target progression in MS, which is one of the greatest unmet needs in clinical practice. Canada, having one of the world's highest rates of MS and a publicly-funded health care system, represents an optimal country to achieve in-depth analysis of progression. Accordingly, the overarching aim of the Canadian Prospective Cohort Study to Understand Progression in MS (CanProCo) is to evaluate a wide spectrum of factors associated with the clinical onset and rate of disease progression in MS, and to describe how these factors relate to one another to influence progression. METHODS: CanProCo is a prospective, observational cohort study with investigators specializing in epidemiology, neuroimaging, neuroimmunology, health services research and health economics. CanProCo's study design was approved by an international review panel, comprised of content experts and key stakeholders. One thousand individuals with radiologically-isolated syndrome, relapsing-remitting MS, and primary-progressive MS within 10-15 years of disease onset will be recruited from 5 academic MS centres in Canada. Participants will undergo detailed clinical evaluation annually over 5 years (including advanced, app-based clinical data collection). In a subset of participants within 5-10 years of disease onset (n = 500), blood, cerebrospinal fluid, and research MRIs will be collected allowing an integrated, in-depth evaluation of factors contributing to progression in MS from multiple perspectives. Factors of interest range from biological measures (e.g. single-cell RNA-sequencing), MRI-based microstructural assessment, participant characteristics (self-reported, performance-based, clinician-assessed, health-system based), and micro and macro-environmental factors. DISCUSSION: Halting the progression of MS remains a fundamental need to improve the lives of people living with MS. Achieving this requires leveraging transdisciplinary approaches to better characterize why clinical progression occurs. CanProCo is a pioneering multi-dimensional cohort study aiming to characterize these determinants to inform the development and implementation of efficacious and effective interventions.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Canadá , Estudos de Coortes , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/terapia , Estudos Prospectivos
18.
Brain ; 143(5): 1297-1314, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919518

RESUMO

The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.


Assuntos
Hemorragia Cerebral/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Microglia/imunologia , Animais , Humanos , Fenótipo
19.
Glia ; 68(6): 1255-1273, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31894889

RESUMO

The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-ß1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-ß1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.


Assuntos
Ácidos Araquidônicos/farmacologia , Astrócitos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/farmacologia , Oligodendroglia/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Endocanabinoides/farmacologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Ratos , Remielinização/fisiologia
20.
N Engl J Med ; 376(22): 2122-2133, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28564557

RESUMO

BACKGROUND: On the basis of encouraging preliminary results, we conducted a randomized, controlled trial to determine whether minocycline reduces the risk of conversion from a first demyelinating event (also known as a clinically isolated syndrome) to multiple sclerosis. METHODS: During the period from January 2009 through July 2013, we randomly assigned participants who had had their first demyelinating symptoms within the previous 180 days to receive either 100 mg of minocycline, administered orally twice daily, or placebo. Administration of minocycline or placebo was continued until a diagnosis of multiple sclerosis was established or until 24 months after randomization, whichever came first. The primary outcome was conversion to multiple sclerosis (diagnosed on the basis of the 2005 McDonald criteria) within 6 months after randomization. Secondary outcomes included conversion to multiple sclerosis within 24 months after randomization and changes on magnetic resonance imaging (MRI) at 6 months and 24 months (change in lesion volume on T2-weighted MRI, cumulative number of new lesions enhanced on T1-weighted MRI ["enhancing lesions"], and cumulative combined number of unique lesions [new enhancing lesions on T1-weighted MRI plus new and newly enlarged lesions on T2-weighted MRI]). RESULTS: A total of 142 eligible participants underwent randomization at 12 Canadian multiple sclerosis clinics; 72 participants were assigned to the minocycline group and 70 to the placebo group. The mean age of the participants was 35.8 years, and 68.3% were women. The unadjusted risk of conversion to multiple sclerosis within 6 months after randomization was 61.0% in the placebo group and 33.4% in the minocycline group, a difference of 27.6 percentage points (95% confidence interval [CI], 11.4 to 43.9; P=0.001). After adjustment for the number of enhancing lesions at baseline, the difference in the risk of conversion to multiple sclerosis within 6 months after randomization was 18.5 percentage points (95% CI, 3.7 to 33.3; P=0.01); the unadjusted risk difference was not significant at the 24-month secondary outcome time point (P=0.06). All secondary MRI outcomes favored minocycline over placebo at 6 months but not at 24 months. Trial withdrawals and adverse events of rash, dizziness, and dental discoloration were more frequent among participants who received minocycline than among those who received placebo. CONCLUSIONS: The risk of conversion from a clinically isolated syndrome to multiple sclerosis was significantly lower with minocycline than with placebo over 6 months but not over 24 months. (Funded by the Multiple Sclerosis Society of Canada; ClinicalTrials.gov number, NCT00666887 .).


Assuntos
Antibacterianos/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Minociclina/uso terapêutico , Esclerose Múltipla/prevenção & controle , Análise Atuarial , Administração Oral , Adulto , Antibacterianos/efeitos adversos , Progressão da Doença , Tontura/induzido quimicamente , Método Duplo-Cego , Exantema/induzido quimicamente , Feminino , Humanos , Análise de Intenção de Tratamento , Tábuas de Vida , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Minociclina/efeitos adversos , Esclerose Múltipla/diagnóstico por imagem , Risco , Descoloração de Dente/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA