RESUMO
We investigate the effect of adding graphene oxide (GO) sheets at the polymer-polymer interface on the dewetting dynamics and compatibility of immiscible polymer bilayer films. GO monolayers are deposited at the poly(methyl methacrylate) (PMMA)-polystyrene (PS) interface by the Langmuir-Schaefer technique. GO monolayers are found to significantly inhibit the dewetting behavior of both PMMA films (on PS substrates) and PS films (on PMMA substrates). This can be interpreted in terms of an interfacial interaction between the GO sheets and these polymers, which is evidenced by the reduced contact angle of the dewet droplets. The favorable interaction of GO with both PS and PMMA facilitates compatibilization of the immiscible polymer bilayer films, thereby stabilizing their bilayer films against dewetting. This compatibilization effect is verified by neutron reflectivity measurements, which reveal that the addition of GO monolayers broadens the interface between PS and the deuterated PMMA films by 2.2 times over that of the bilayer in the absence of GO.
RESUMO
We developed a novel and easy encapsulation method for quantum dots (QDs) using a partially oxidized semi-crystalline polymeric material which forms a micron-sized granule with a multi-lamellar structure from a dilute solution. The QDs were highly dispersed in the granule in such a way that they were adsorbed on the lamella with â¼12 nm spacing followed by lamellar stacking. The QDs were heavily loaded into the granule to 16.7 wt% without aggregation, a process which took only a few minutes. We found that the quantum yield of the QDs was not degraded after the encapsulation. The encapsulated QD-silicone composite exhibited excellent long-term photo- and thermal stability with its initial photoluminescence intensity maintained after blue LED light radiation for 67 days and storage at 85 °C and 85% relative humidity for 119 days.
RESUMO
Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II)>Cu(II)>Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO>MWCNT>PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.
RESUMO
Control of a two-dimensional (2D) structure of assembled graphene oxide (GO) sheets is highly desirable for fundamental research and potential applications of graphene devices. We show that an alkylamine surfactant, i.e., octadecylamine (ODA), Langmuir monolayer can be utilized as a template for adsorbing highly hydrophilic GO sheets in an aqueous subphase at the liquid-gas interface. The densely packed 2-D monolayer of such complex films was obtained on arbitrary substrates by applying Langmuir-Schaefer or Langmuir-Blodgett technique. Morphology control of GO sheets was also achieved upon compression by tuning the amount of spread ODA molecules. We found that ODA surfactant monolayers prevent GO sheets from sliding, resulting in formation of wrinkling rather than overlapping at the liquid-gas interface during the compression. The morphology structures did not change after a graphitization procedure of chemical hydrazine reduction and thermal annealing treatments. Since morphologies of graphene films are closely correlated to the performance of graphene-based materials, the technique employed in this study can provide a route for applications requiring wrinkled graphenes, ranging from nanoelectronic devices to energy storage materials, such as supercapacitors and fuel cell electrodes.
RESUMO
Polymer-like dielectrics with superb thermal conductivity as well as high dielectric properties hold great promise for the modern electronic field. Nevertheless, integrating these properties into a single material simultaneously remains problematic due to their mutually limited physical connotations. In this study, we developed high-quality thermally conductive epoxy composites with excellent dielectric properties. This was achieved by incorporating surface-functionalized microscale hexagonal boron nitride (BN) along with N-[3-(Trimethoxysilyl)propyl]ethylene diamine (DN) and N-[3-(Trimethoxysilyl)propyl]aniline (PN). In the resulting epoxy composite, microscale BN serves as the primary building block for establishing the thermally conductive network, while silica particles act as bridges to regulate heat transfer and reduce interfacial phonon-scattering. The prepared composites were thoroughly examined across various filler contents (ranging from 10 to 80 wt%). Among them, the DNBN/epoxy composite exhibited higher thermal conductivity (in-plane: 47.03 W m-1 K-1) at 60 wt% filler content compared to BN/epoxy (39.40 W m-1 K-1) and PNBN/epoxy (33 W m-1 K-1) composites. These results highlight the usefulness of surface modification of BN in improving compatibility between fillers and epoxy, ultimately reducing composite viscosity. Furthermore, the DNBN/epoxy composite at 60 wt% demonstrated superb dielectric constant (â¼6.15) without compromising on dissipation loss (â¼0.06). The strategy adopted in this study offers significant insights into designing dielectric thermally conductive composites with superior performance outcomes.
RESUMO
Transition metal oxides used as electrode materials for flexible supercapacitors have attracted huge attention due to their high specific capacitance and surface-to-volume ratio, specifically for cobalt oxide (Co3O4) nanoparticles. However, the low intrinsic electronic conductivity and aggregation of Co3O4 nanoparticles restrict their electrochemical performance and prevent these electrode materials from being commercialized. Herein, a facile, advantageous, and cost effective sol-gel synthetic route for growing Co3O4 nanoparticles uniformly over a low cost and eco-friendly one-dimensional (1D) hydrophilic cellulose nanofiber (CNF) surface has been reported. This exhibits high conductivity, which enables the symmetric electrode to deliver a high specific capacitance of â¼214 F g-1 at 1 A g-1 with remarkable cycling behavior (â¼94% even after 5000 cycles) compared to that of pristine CNF and Co3O4 electrodes in an aqueous electrolyte. Furthermore, the binder-free nature of 1D Co3O4@CNF (which was carbonized at 200 °C for about 20 min under a H2/Ar atmosphere) shows great potential as a hybrid flexible paper-like electrode and provides a high specific capacitance of 80 F g-1 at 1 A g-1 with a superior energy density of 10 W h kg-1 in the gel electrolyte. This study provides a novel pathway, using a hydrophilic 1D CNF, for realizing the full potential of Co3O4 nanoparticles as advanced electrode materials for next generation flexible electronic devices.
RESUMO
The protection of skin cells against intense ultra-violet (UV) rays is of greater concern and needs immediate attention. Sustainable efforts and strategies are in progress to minimize the factors that adversely affect skin cells. Herein, we synthesized zinc oxide (ZnO) in the form of core-shell (Core@Shell) or reverse core-shell (RCore@Shell) structure where silica was synthesized as a shell or core, respectively on the surface of cellulose nanofiber (CNF). Both cases exhibited much higher UV-blocking performance as well as alleviate the whitening effect because these particles retain their nanoscale dimensions as favored by the cosmetic industry. Significantly, these nanostructures shows the less photocatalysis activity than that of pristine ZnO nanoparticles. And we found that the photocatalytic activity of ZnO in RCore@Shell/CNF was more suppressed that Core@Shell/CNF, showing that it is a proper structure to neutralize or scavenge free radicals prior to their exit from the particles. Our results suggest that, reduction in photocatalysis induced by Core@Shell/CNF and RCore@Shell/CNF nanostructures is a promising strategy for skincare products in cosmetic industry.
Assuntos
Nanofibras , Nanoestruturas , Óxido de Zinco , Catálise , CeluloseRESUMO
We fabricated a magnetite nanoparticle-graphene oxide (GO) hybrid via a non-chemical and one-step process assisted by ultrasound in an aqueous solution where the nanoparticle attached to the hydrophobic region on graphite oxide (multi-layered GO) which, at the same time, was exfoliated. Unlike chemical methods such as precipitation, oxygen-containing functional groups on GO have not been consumed or reduced during the hybridization, leading that this hybrid exhibited good water solubility and high adsorption capacity for heavy metal ions such as Pb(II) and Au(III). After the adsorption, the hybrid was instantly collected using a magnet. This method can be useful for hybridizing various nanoparticles with GO.
RESUMO
We present a simple and facile approach to creating asymmetrically modified graphene oxide sheets by grafting polymers with different polarities. Single-layered Janus graphene derivatives were prepared by grafting polymers with different polarities at the liquid-gas interface through one step functionalization. This approach allows obtaining free-standing monolayers of Janus graphene oxide sheets for large area, and also controlling the morphology (i.e., wrinkled Janus graphene oxide sheets) by a compression monolayer. A neutron reflectivity technique is used to check the functionalization on each side of the monolayer, and the results are compared with contact angles to determine its amphiphilic nature. The free-standing Janus monolayers become robust after UV-irradiation, and are able to withstand various solvents. Because these robust Janus graphene films can maintain their anisotropic functionalities over time, this technique provides a new strategy for fabricating functional materials that require amphiphilic properties (i.e., oil-water separation membranes and chemical compatibilizers functioning as a 2D surfactant) and different electrical functionalities (i.e., flexible lightweight p-n junction semiconductors and stimuli-driven actuators).
RESUMO
Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.