Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 36(7): 1032-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36737844

RESUMO

Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.


Assuntos
Pigmentação , Comportamento Predatório , Animais , Filogenia , Tamanho Corporal , Larva
2.
J Food Sci Technol ; 59(4): 1317-1325, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250057

RESUMO

The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L-1) or GTE + GTP + FVN (16.69 g L-1) appeared to promote starch hydrolysis compared to control (15.49 g L-1). In case of major flavonoids, addition of epigallocatechin gallate (EGCG), EGCG + myricetin (M) into wheat starch significantly increased the digestion of starch into glucose. Glucose transport rate decreased by 22.35% in wheat starch + GTE + GTP + FVN (1.39%), while the least amount of glucose (1.70%) was transported in EGCG mixed with M (1% of EGCG) as secondary ingredients among individual flavonoids formulation. It indicated that inhibitory effect on glucose transport was higher in addition of GTE, GTP, and FVN as excipients ingredients rather than targeted major flavonoids. Results from the current study suggest that whole green tea including flavonoid rich fractions could enhance hypoglycemic potential of GTE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05140-2.

3.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802142

RESUMO

The aim of this study was to profile the bioaccessibility and intestinal absorption of epicatechins and flavonols in different forms of green tea and its formulation: loose leaf tea, powdered tea, 35% catechins containing GTE, and GTE formulated with green tea-derived polysaccharide and flavonols (CATEPLUS™). The bioaccessibillity and intestinal absorption of epicatechins and flavonols was investigated by using an in vitro digestion model system with Caco-2 cells. The bioaccessibility of total epicatechins in loose leaf tea, powdered tea, GTE, and CATEPLUS™ was 1.27%, 2.30%, 22.05%, and 18.72%, respectively, showing that GTE and CATEPLUS™ had significantly higher bioaccessibility than powdered tea and loose leaf tea. None of the flavonols were detected in powdered tea and loose leaf tea, but the bioaccessibility of the total flavonols in GTE and CATEPLUS™ was 85.74% and 66.98%, respectively. The highest intestinal absorption of epicatechins was found in CATEPLUS™ (171.39 ± 5.39 ng/mg protein) followed by GTE (57.38 ± 9.31), powdered tea (3.60 ± 0.67), and loose leaf tea (2.94 ± 1.03). The results from the study suggest that formulating green tea extracts rich in catechins with second components obtained from green tea processing could enhance the bioavailability of epicatechins.


Assuntos
Flavonoides/farmacologia , Chá/metabolismo , Antioxidantes , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Catequina/química , Catequina/metabolismo , Digestão/efeitos dos fármacos , Digestão/fisiologia , Flavonoides/metabolismo , Flavonóis/química , Flavonóis/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Modelos Biológicos , Extratos Vegetais
4.
J Sci Food Agric ; 100(10): 3979-3986, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342987

RESUMO

BACKGROUND: Water soluble polysaccharide derived from green tea (WSP) is produced as byproducts when catechins were extracted from green tea. Although inhibitory effect of green tea catechins on the glucose transport in small intestine has been studied, the hypoglycemic efficacy of the WSP or its combinational effect has not been studied. In order to investigate hypoglycemic efficacy of the WSP or its combinational effect with green tea extract (GTE), co-consumption of GTE and WSP with wheat starch was investigated using in vitro digestion coupled with Caco-2 cells. The mechanism of the intestinal glucose transport was elucidated throughout the gene expression of the intestinal glucose transporters, which included sodium dependent glucose transporter (SGLT1) and glucose transporter 2 (GLUT2), using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The co-digestion of wheat starch with GTE during the small intestinal phase was the most rapidly digested into reducing sugar (73.96 g L-1 ) compared to itself (48.44 g L-1 ), WSP (60.35 g L-1 ), and GTE + WSP (61.81 g L-1 ). Intestinal glucose transport was 11.82, 7.59, 4.49, and 2.40% for wheat starch, wheat starch with GTE, WSP, and GTE + WSP, respectively. The highest decreased expression pattern in SGLT1 was observed when cells treated with wheat starch + GTE + WSP (0.66-fold) compared to GTE or WSP treatment. CONCLUSION: The results suggested that co-consumption of green tea derived products with wheat starch could delay the intestinal absorption of glucose. Results from the current study suggested that GTE and WSP could be the useful supplements of dietary therapy for hyperglycemia to delay glucose absorption. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/metabolismo , Catequina/metabolismo , Glucose/metabolismo , Hipoglicemiantes/metabolismo , Mucosa Intestinal/metabolismo , Extratos Vegetais/metabolismo , Polissacarídeos/metabolismo , Transporte Biológico , Células CACO-2 , Camellia sinensis/química , Humanos , Amido/metabolismo , Chá/química , Chá/metabolismo
5.
Sci Rep ; 13(1): 4203, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918652

RESUMO

Amphibians are famous for their ability to change colours. And a considerable number of studies have investigated the internal and external factors that affect the expression of this phenotypic plasticity. Evidence to date suggests that thermoregulation and camouflage are the main pressures that influence frogs' adaptive colour change responses. However, certain gaps in our knowledge of this phenomenon remain, namely: (i) how do frogs adjust their colour in response to continuously changing external conditions?; (ii) what is the direction of change when two different functions of colour (camouflage and thermoregulation) are in conflict?; (iii) does reflectance in the near-infrared region show thermally adaptive change?; and (iv) is the colour change ability of each frog an individual trait (i.e., consistent within an individual over time)? Using Dryophytes japonicus (Hylidae, Hyla), we performed a series of experiments to answer the above questions. We first showed that frogs' responses to continuously-changing external conditions (i.e., background colour and temperature) were not linear and limited to the range they experience under natural conditions. Second, when a functional conflict existed, camouflage constrained the adaptive response for thermoregulation and vice versa. Third, though both temperature and background colour induced a change in near-infrared reflectance, this change was largely explained by the high correlation between colour (reflectance in the visible spectrum) and near-infrared reflectance. Fourth, within-individual variation in colour change capacity (i.e., the degree of colour change an individual can display) was lower than inter-individual variation, suggesting individuality of colour change capacity; however, we also found that colour change capacity could change gradually with time within individuals. Our results collectively reveal several new aspects of how evolution shapes the colour change process and highlight how variation in external conditions restricts the extent of colour change in treefrogs.


Assuntos
Anuros , Regulação da Temperatura Corporal , Humanos , Animais , Cor , Anuros/fisiologia , Adaptação Fisiológica , Fenótipo , Pigmentação/fisiologia
6.
PeerJ ; 9: e12172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603854

RESUMO

Ephemeral streams are challenging environments for tadpoles; thus, adaptive features that increase the survival of these larvae should be favored by natural selection. In this study, we compared the adaptive growth strategies of Bombina orientalis (the oriental fire-bellied toad) tadpoles from ephemeral streams with those of such tadpoles from non-ephemeral streams. Using a common garden experiment, we tested the interactive effects of location (ephemeral vs. non-ephemeral), food availability, and growing density on larval period, weight at metamorphosis, and cannibalism. We found that tadpoles from ephemeral streams underwent a shorter larval period compared with those from non-ephemeral streams but that this difference was contingent on food availability. The observed faster growth is likely to be an adaptive response because tadpoles in ephemeral streams experience more biotic/abiotic stressors, such as desiccation risk and limited resources, compared with those in non-ephemeral streams, with their earlier metamorphosis potentially resulting in survival benefits. As a trade-off for their faster growth, tadpoles from ephemeral streams generally had a lower body weight at metamorphosis compared with those from non-ephemeral streams. We also found lower cannibalism rates among tadpoles from ephemeral streams, which can be attributed to the indirect fitness costs of cannibalizing their kin. Our study demonstrates how ephemeral habitats have affected the evolutionary change in cannibalistic behaviors in anurans and provides additional evidence that natural selection has mediated the evolution of growth strategies of tadpoles in ephemeral streams.

7.
Food Funct ; 11(4): 3105-3111, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32196040

RESUMO

It was revealed that excipient ingredients such as flavonols (FVN) or polysaccharides (GTP) which could be derived from green tea enhanced catechin absorption. We hypothesized that the addition of FVN or GTP as excipient ingredients into epicatechin rich green tea extracts (GTE) may improve the health benefits that accompany its consumption. When FVN8.7 (8.7% of GTE, w/w) was added to the GTE (20 mg) as an excipient ingredient, the bioaccessibility and intestinal absorption of total epicatechins was 1.2 and 1.5 times higher than that of only GTE, respectively. This was due to the free radical scavenging capacity of flavonols, showing 114.23 ± 3.07 µmol TE per g for GTE 100 + FVN8.7 and 113.64 ± 1.61 µmol TE per g for GTE 100 + FVN2, respectively. This was significantly higher than the GTE or GTE 100 + OW2 (onion peel and whangchil extracts, 2% of GTE, w/w) which have the same amount of total flavonols. Regarding potential hypoglycemic effects, co-digestion of GTE (20 mg) + green tea polysaccharides (2 mg) + FVN (5 mg) with wheat starch significantly reduced glucose intestinal absorption by 41.85 ± 1.75% compared to only the wheat starch. The results from the current study suggest that whole green tea components rich in flavonols and polysaccharides could be potential hypoglycemic excipient ingredients for green tea catechins.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Catequina/farmacologia , Excipientes/farmacologia , Flavonóis/farmacologia , Radicais Livres/metabolismo , Polissacarídeos/farmacologia , Chá/química , Antioxidantes/farmacologia , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Camellia sinensis , Humanos , Cebolas , Extratos Vegetais/farmacologia , Amido
8.
Food Funct ; 10(2): 746-753, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30667442

RESUMO

Green tea is being studied extensively for its postprandial hypoglycemic effect due to its abundant catechins. Along with catechins, water-soluble green tea polysaccharides are also currently gaining attention due to their natural hypoglycemic properties. The current study investigated the combinational effect of green tea extract (GTE) and crude green tea polysaccharides (CTP) in inhibiting glucose transport after digestion of rice starch, using an in vitro digestion model with a Caco-2 cell. Co-digestion of rice starch with GTE (16.09 ± 1.02 g L-1), CTP (16.83 ± 0.81 g L-1), or GTE + CTP (17.79 ± 0.80 g L-1) hydrolyzed less starch into glucose compared with the control (18.24 ± 0.45 g L-1). Glucose transport from digesta to the Caco-2 cell after 120 min incubation was significantly inhibited with GTE + CTP (53.26 ± 4.34%). Gene expression of intestinal glucose transporters, which included sodium-dependent glucose transporter (SGLT1) and glucose transporter 2 (GLUT2), was not altered by GTE, CTP or GTE + CTP, except for the GTE-mediated upregulation of GLUT2. It is concluded that GTE + CTP lowered digestibility of rice starch with glucose and also delayed glucose uptake to the intestinal epithelium. This finding suggests a potential for green tea polysaccharides as a natural postprandial hypoglycemic substance.


Assuntos
Camellia sinensis/química , Glucose/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Polissacarídeos/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Digestão , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Humanos , Oryza/química , Extratos Vegetais/química , Polissacarídeos/química , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Amido/química , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA