Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
2.
Proc Natl Acad Sci U S A ; 119(42): e2117467119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215467

RESUMO

Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.


Assuntos
Celulase , Clostridium thermocellum , Acústica , Proteínas de Bactérias/metabolismo , Carboidratos/química , Celulase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/metabolismo , Análise Espectral , Açúcares
3.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
4.
Environ Res ; 214(Pt 3): 113898, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931189

RESUMO

The effect of atmospheric aerosols on Indian monsoon is one of the scientifically challenging and societally relevant research issues of the recent decades. Past studies have derived inferences mostly based on local emissions and their impacts thereupon. However, more recent studies have shown that the remote effects driven by aerosols elsewhere could also impact the monsoon system on different time scales. Our study using an atmospheric general circulation model (AGCM) shows that regional carbonaceous aerosol emissions (from North America, Europe and North Africa and Asia) can significantly alter Indian summer monsoon rainfall. It is interesting to note that the effects of remote aerosols are larger and bear a resemblance to each other in comparison to local emissions. Our study reveals that the modulation of large-scale circulation induced by regional warming by carbonaceous aerosols leads to teleconnection patterns around the globe, thereby changing the precipitation depending on the phase of these disturbances. We also find that the effects of remote carbonaceous aerosols are strengthened by modulation/feedback through natural dust aerosols over the Arabian Sea with subsequent increase in rainfall over India. The results signify that the changes in the aerosol emissions in one region could lead to the change in precipitation over other regions through global teleconnection and associated feedbacks induced by regional atmospheric warming and/or cooling.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Retroalimentação , Estações do Ano
5.
Sens Actuators B Chem ; 352: 131060, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785863

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the most harmful viruses for humans in nowadays. To prevent the spread of MERS-CoV, a valid detection method is highly needed. For the first time, a MERS-nanovesicle (NV) biosensor composed of multi-functional DNA aptamer and graphene oxide encapsulated molybdenum disulfide (GO-MoS2) hybrid nanocomposite was fabricated based on electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) techniques. The MERS-NV aptamer was designed for specifically binding to the spike protein on MERS-NVs and it is prepared using the systematic evolution of ligands by exponential enrichment (SELEX) technique. For constructing a multi-functional MERS aptamer (MF-aptamer), the prepared aptamer was connected to the DNA 3-way junction (3WJ) structure. DNA 3WJ has the three arms that can connect the three individual functional groups including MERS aptamer (bioprobe), methylene blue (signal reporter) and thiol group (linker) Then, GO-MoS2 hybrid nanocomposite was prepared for the substrate of EC/SERS-based MERS-NV biosensor construction. Then, the assembled multifunctional (MF) DNA aptamer was immobilized on GO-MoS2. The proposed biosensor can detect MERS-NVs not only in a phosphate-buffered saline (PBS) solution (SERS LOD: 0.176 pg/ml, EIS LOD: 0.405 pg/ml) but also in diluted 10% saliva (SERS LOD: 0.525 pg/ml, EIS LOD: 0.645 pg/ml).

6.
Small ; 17(41): e2102892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34515417

RESUMO

Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.


Assuntos
Fenômenos Magnéticos , Mecanotransdução Celular , Adesão Celular , Diferenciação Celular , Ligantes
7.
Small ; 14(16): e1703970, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29573539

RESUMO

A newly developed electrochemical biosensor composed of a topological insulator (TI) and metallic DNA (mDNA) is fabricated. The bismuth selenide nanoparticle (Bi2 Se3 NP) is synthesized and sandwiched between the gold electrode and another Au-deposited thin layer (Bi2 Se3 @Au). Then, eight-silver-ion mediated double-stranded DNA (mDNA) is immobilized onto the substrate (Bi2 Se3 @Au-mDNA) for the further detection of hydrogen peroxide. The Bi2 Se3 NP acts as the electrochemical-signal booster, while unprecedentedly its encapsulation by the Au thin layer keeps the TI surface states protected, improves its electrochemical-signal stability and provides an excellent platform for the subsequent covalent immobilization of the mDNA through Au-thiol interaction. Electrochemical results show that the fabricated biosensor represents much higher Ag+ redox current (≈10 times) than those electrodes prepared without Bi2 Se3 @Au. The characterization of the Bi2 Se3 @Au-mDNA film is confirmed by atomic force microscopy, scanning tunneling microscopy, and cyclic voltammetry. The proposed biosensor shows a dynamic range of 00.10 × 10-6 m to 27.30 × 10-6 m, very low detection limit (10 × 10-9 m), unique current response (1.6 s), sound H2 O2 recovery in serum, and substantial capability to classify two breast cancer subtypes (MCF-7 and MDA-MB-231) based on their difference in the H2 O2 generation, offering potential applications in the biomedicine and pharmacology fields.


Assuntos
Técnicas Biossensoriais/métodos , Neoplasias da Mama/metabolismo , DNA/química , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/metabolismo , Prata/química , Linhagem Celular Tumoral , Feminino , Ouro/química , Humanos , Células MCF-7 , Nanopartículas Metálicas/química
8.
Small ; 14(38): e1802934, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30141567

RESUMO

For the first time, topological insulator bismuth selenide nanoparticles (Bi2 Se3 NP) are core-shelled with gold (Au@Bi2 Se3 ) i) to represent considerably small-sized (11 nm) plasmonic nanoparticles, enabling accurate bioimaging in the near-infrared region; ii) to substantially improve Bi2 Se3 biocompatibility, iii) water dispersibility, and iv) surface functionalization capability through straightforward gold-thiol interaction. The Au@Bi2 Se3 is subsequently functionalized for v) effective targeting of SH-SY5Y cancer cells, vi) disrupting the endosome/lysosome membrane, vii) traceable delivery of antagomiR-152 and further synergetic oncomiR knockdown and photothermal therapy (PTT). Unprecedentedly, it is observed that the Au shell thickness has a significant impact on evoking the exotic plasmonic features of Bi2 Se3 . The Au@Bi2 Se3 possesses a high photothermal conversion efficiency (35.5%) and a remarkable surface plasmonic effect (both properties are approximately twofold higher than those of 50 nm Au nanoparticles). In contrast to the siRNA/miRNA delivery methods, the antagomiR delivery is based on strand displacement, in which the antagomiR-152 is displaced by oncomiR-152 followed by a surface-enhanced Raman spectroscopy signal drop. This enables both cancer cell diagnosis and in vitro real-time monitoring of the antagomiR release. This selective PTT nanoparticle can also efficiently target solid tumors and undergo in vivo PTT, indicating its potential clinical applications.


Assuntos
Antagomirs/química , Ouro/química , Nanopartículas Metálicas/química , Compostos Organosselênicos/química , Fototerapia/métodos , Bismuto , MicroRNAs/genética , RNA Interferente Pequeno/genética , Compostos de Selênio , Nanomedicina Teranóstica/métodos
9.
Sensors (Basel) ; 17(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186040

RESUMO

Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.


Assuntos
Nanopartículas Metálicas , Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Óxidos , Prata
10.
Sensors (Basel) ; 16(5)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27171089

RESUMO

In the present study, we fabricated a hemoglobin/gold nanoparticle (Hb/GNP) heterolayer immobilized on the Au micro-gap to confirm H2O2 detection with a signal-enhancement effect. The hemoglobin which contained the heme group catalyzed the reduction of H2O2. To facilitate the electron transfer between hemoglobin and Au micro-gap electrode, a gold nanoparticle was introduced. The Au micro-gap electrode that has gap size of 5 µm was fabricated by conventional photolithographic technique to locate working and counter electrodes oppositely in a single chip for the signal sensitivity and reliability. The hemoglobin was self-assembled onto the Au surface via chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the gold nanoparticles were adsorbed onto hemoglobin/6-MHA heterolayers by the layer-by-layer (LbL) method. The fabrication of the Hb/GNP heterolayer was confirmed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). The redox property and H2O2 detection of Hb/GNP on the micro-gap electrode was investigated by a cyclic voltammetry (CV) experiment. Taken together, the present results show that the electrochemical signal-enhancement effect of a hemoglobin/nanoparticle heterolayer was well confirmed on the micro-scale electrode for biosensor applications.


Assuntos
Técnicas Biossensoriais , Eletrodos , Ouro , Hemoglobinas/análise , Peróxido de Hidrogênio , Técnicas Eletroquímicas , Nanopartículas Metálicas , Nanopartículas , Reprodutibilidade dos Testes
11.
J Nanosci Nanotechnol ; 14(3): 2466-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745248

RESUMO

The films organized with biomolecules and organic materials are important elements for developing bioelectronic devices according to their electron transfer property. Until now, several concepts of techniques have been accomplished to be used for developing biomemory devices. However it is difficult to detect the current signal from the electron transfer between biomolecules and the substrate in these fabricated films. To enhance the current signal, the silver nanoparticle was introduced to the cytochrome c in this present study. The surface morphology of the fabricated film was investigated by atomic force microscopy. The current signal enhancement was investigated by cyclic voltammetry. As a result, we could obtain the redox potentials. Moreover, by chronoamperometry, we validated that this proposed layer showed the signal-enhanced memory property for biomemory devices. This new film composed of the cytochrome c and the silver nanoparticle showed the signal enhancement. Using chronoamperometry, the areas under the graphs between 0 s and 50 ms were calculated. The calculated result showed that the areas under the cytochrome c/SNP graph and cytochrome c graph were 6.93 x 10(-7) C and 4.54 x 10(-7) C, respectively. This numerical value verified that the cytochrome c/silver nanoparticle hetero-layer film showed better electron charged biomemory performance compared to the cytochrome c monolayer. This signal-enhanced film can be applied to the bioelectronic devices which are able to replace existing electronic devices in the near future.


Assuntos
Citocromos c/química , Eletroquímica/métodos , Nanopartículas Metálicas/química , Prata/química , Técnicas Biossensoriais/instrumentação , Transporte de Elétrons , Armazenamento e Recuperação da Informação , Teste de Materiais , Microscopia de Força Atômica , Nanopartículas/química , Oxigênio/química , Propriedades de Superfície
12.
ACS Sens ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954790

RESUMO

Brain organoids are being recognized as valuable tools for drug evaluation in neurodegenerative diseases due to their similarity to the human brain's structure and function. However, a critical challenge is the lack of selective and sensitive electrochemical sensing platforms to detect the response of brain organoids, particularly changes in the neurotransmitter concentration upon drug treatment. This study introduces a 3D concave electrode patterned with a mesoporous Au nanodot for the detection of electrochemical signals of dopamine in response to drugs in brain organoids for the first time. The mesoporous Au nanodot-patterned film was fabricated using laser interference lithography and electrochemical deposition. Then, the film was attached to a polymer-based 3D concave mold to obtain a 3D concave electrode. Midbrain organoids generated from Parkinson's disease (PD) patient-derived iPSCs with gene mutations (named as PD midbrain organoid) or normal midbrain organoids were positioned on the developed 3D concave electrode. The 3D concave electrode showed a 1.4 times higher electrochemical signal of dopamine compared to the bare gold electrode. And the dopamine secreted from normal midbrain organoids or PD midbrain organoids on the 3D concave electrode could be detected electrochemically. After the treatment of PD midbrain organoids with levodopa, the drug for PD, the increase in dopamine level was detected due to the activation of dopaminergic neurons by the drug. The results suggest the potential of the proposed 3D concave electrode combined with brain organoids as a useful tool for assessing drug efficacy. This sensing system can be applied to a variety of organoids for a comprehensive drug evaluation.

13.
RSC Adv ; 14(10): 7142-7156, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419681

RESUMO

Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.

14.
Adv Sci (Weinh) ; 11(4): e2305371, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036423

RESUMO

Biohybrid robots have been developed for biomedical applications and industrial robotics. However, the biohybrid robots have limitations to be applied in neurodegenerative disease research due to the absence of a central nervous system. In addition, the organoids-on-a-chip has not yet been able to replicate the physiological function of muscle movement in the human motor system, which is essential for evaluating the accuracy of the drugs used for treating neurodegenerative diseases. Here, a human motor system-based biohybrid robot-on-a-chip composed of a brain organoid, multi-motor neuron spheroids, and muscle bundle on solid substrateis proposed to evaluate the drug effect on neurodegenerative diseases for the first time. The electrophysiological signals from the cerebral organoid induced the muscle bundle movement through motor neuron spheroids. To evaluate the drug effect on Parkinson's disease (PD), a patient-derived midbrain organoid is generated and incorporated into a biohybrid robot-on-a-chip. The drug effect on PD is successfully evaluated by measuring muscle bundle movement. The muscle bundle movement of PD patient-derived midbrain organoid-based biohybrid robot-on-a-chip is increased from 4.5 ± 0.99 µm to 18.67 ± 2.25 µm in response to levodopa. The proposed human motor system-based biohybrid robot-on-a-chip can serve as a standard biohybrid robot model for drug evaluation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Robótica , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Avaliação de Medicamentos , Dispositivos Lab-On-A-Chip
15.
Ann Glob Health ; 90(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312715

RESUMO

Background: The United Nations has declared that humans have a right to clean air. Despite this, many deaths and disability-adjusted life years are attributed to air pollution exposure each year. We face both challenges to air quality and opportunities to improve, but several areas need to be addressed with urgency. Objective: This paper summarises the recent research presented at the Pacific Basin Consortium for Environment and Health Symposium and focuses on three key areas of air pollution that are important to human health and require more research. Findings and conclusion: Indoor spaces are commonly places of exposure to poor air quality and are difficult to monitor and regulate. Global climate change risks worsening air quality in a bi-directional fashion. The rising use of electric vehicles may offer opportunities to improve air quality, but it also presents new challenges. Government policies and initiatives could lead to improved air and environmental justice. Several populations, such as older people and children, face increased harm from air pollution and should become priority groups for action.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Criança , Humanos , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Mudança Climática , Poluentes Atmosféricos/análise
17.
Salud Publica Mex ; 55(5): 492-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24626620

RESUMO

OBJECTIVE: To examine whether leisure-time physical activity (PA) is associated with hypertension status in Korean adults (men, 586; women, 1135) who visited a public health promotion center for a medical checkup in Seoul from 2010 to 2011. MATERIALS AND METHODS: Multivariate logistic regression analysis adjusted for age, body mass index, sleep duration, mental stress, education level, economic status, and drinking and smoking frequencies was performed. RESULTS: Odds ratios and 95% confidence intervals for having hypertension and performing PA compared to having hypertension and not performing PA were not significant for both sexes regardless of the PA frequency and intensity, except for moderate PA 3 times per week in women. CONCLUSION: We conclude that PA has no or little association with hypertension status in Korean adults.


Assuntos
Hipertensão/epidemiologia , Atividades de Lazer , Atividade Motora , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , República da Coreia/epidemiologia , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
18.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831973

RESUMO

The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Ácidos Nucleicos , Humanos , Pandemias , Nanotecnologia , Técnicas Biossensoriais/métodos
19.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37185567

RESUMO

The detection of small molecules has attracted enormous interest in various fields, including the chemical, biological, and healthcare fields. In order to achieve such detection with high accuracy, up to now, various types of biosensors have been developed. Among those biosensors, enzymatic biosensors have shown excellent sensing performances via their highly specific enzymatic reactions with small chemical molecules. As techniques used to implement the sensing function of such enzymatic biosensors, electrochemical and fluorescence techniques have been mostly used for the detection of small molecules because of their advantages. In addition, through the incorporation of nanotechnologies, the detection property of each technique-based enzymatic nanobiosensors can be improved to measure harmful or important small molecules accurately. This review provides interdisciplinary information related to developing enzymatic nanobiosensors for small molecule detection, such as widely used enzymes, target small molecules, and electrochemical/fluorescence techniques. We expect that this review will provide a broad perspective and well-organized roadmap to develop novel electrochemical and fluorescent enzymatic nanobiosensors.


Assuntos
Técnicas Biossensoriais , Nanotecnologia , Nanotecnologia/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
20.
Biosensors (Basel) ; 13(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754127

RESUMO

Neurotransmitters are chemical compounds released by nerve cells, including neurons, astrocytes, and oligodendrocytes, that play an essential role in the transmission of signals in living organisms, particularly in the central nervous system, and they also perform roles in realizing the function and maintaining the state of each organ in the body. The dysregulation of neurotransmitters can cause neurological disorders. This highlights the significance of precise neurotransmitter monitoring to allow early diagnosis and treatment. This review provides a complete multidisciplinary examination of electrochemical biosensors integrating nanomaterials and nanotechnologies in order to achieve the accurate detection and monitoring of neurotransmitters. We introduce extensively researched neurotransmitters and their respective functions in biological beings. Subsequently, electrochemical biosensors are classified based on methodologies employed for direct detection, encompassing the recently documented cell-based electrochemical monitoring systems. These methods involve the detection of neurotransmitters in neuronal cells in vitro, the identification of neurotransmitters emitted by stem cells, and the in vivo monitoring of neurotransmitters. The incorporation of nanomaterials and nanotechnologies into electrochemical biosensors has the potential to assist in the timely detection and management of neurological disorders. This study provides significant insights for researchers and clinicians regarding precise neurotransmitter monitoring and its implications regarding numerous biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA