Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281284

RESUMO

Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mortality. The major pathological alterations of DN include mesangial expansion, extracellular matrix alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and antihypertensive. However, to the best of the authors' knowledge, the effects of the ethanolic extract from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was administrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically, ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well as the inhibition of nephritis and fibrosis in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Fitoterapia , Polygonum/química , Animais , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Glucose/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Masculino , Proteínas de Membrana/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rizoma/química
2.
Integr Med Res ; 13(2): 101041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948488

RESUMO

Background: Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods: Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results: The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions: The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.

3.
Antimicrob Agents Chemother ; 57(2): 924-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208720

RESUMO

Bacterial pathogens have specific virulence factors (e.g., toxins) that contribute significantly to the virulence and infectivity of microorganisms within the human hosts. Virulence factors are molecules expressed by pathogens that enable colonization, immunoevasion, and immunosuppression, obtaining nutrients from the host or gaining entry into host cells. They can cause pathogenesis by inhibiting or stimulating certain host functions. For example, in systemic Staphylococcus aureus infections, virulence factors such as toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB) cause sepsis or toxic shock by uncontrolled stimulation of T lymphocytes and by triggering a cytokine storm. In vitro, these superantigens stimulate the proliferation of human peripheral blood mononuclear cells (PBMC) and the release of many cytokines. NVC-422 (N,N-dichloro-2,2-dimethyltaurine) is a broad-spectrum, fast-acting topical anti-infective agent against microbial pathogens, including antibiotic-resistant microbes. Using mass spectrometry, we demonstrate here that NVC-422 oxidizes methionine residues of TSST-1, SEA, SEB, and exfoliative toxin A (ETA). Exposure of virulence factors to 0.1% NVC-422 for 1 h prevented TSST-1-, SEA-, SEB-, and ETA-induced cell proliferation and cytokine release. Moreover, NVC-422 also delayed and reduced the protein A- and clumping factor-associated agglutination of S. aureus cultures. These results show that, in addition to its well-described direct microbicidal activity, NVC-422 can inactivate S. aureus virulence factors through rapid oxidation of methionines.


Assuntos
Anti-Infecciosos/farmacologia , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Taurina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Enterotoxinas/metabolismo , Exfoliatinas/metabolismo , Metionina/metabolismo , Oxirredução/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A/metabolismo , Superantígenos/metabolismo , Taurina/metabolismo , Taurina/farmacologia
4.
Life (Basel) ; 13(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137908

RESUMO

Cardiac hypertrophy is developed by various diseases such as myocardial infarction, valve diseases, hypertension, and aortic stenosis. Sibjotang (, Shizaotang, SJT), a classic formula in Korean traditional medicine, has been shown to modulate the equilibrium of body fluids and blood pressure. This research study sought to explore the impact and underlying process of Sibjotang on cardiotoxicity induced by DOX in H9c2 cells. In vitro, H9c2 cells were induced by DOX (1 µM) in the presence or absence of SJT (1-5 µg/mL) and incubated for 24 h. In vivo, SJT was administrated to isoproterenol (ISO)-induced cardiac hypertrophy mice (n = 8) at 100 mg/kg/day concentrations. Immunofluorescence staining revealed that SJT mitigated the enlargement of H9c2 cells caused by DOX in a dose-dependent way. Using SJT as a pretreatment notably suppressed the rise in cardiac hypertrophic marker levels induced by DOX. SJT inhibited the DOX-induced ERK1/2 and p38 MAPK signaling pathways. In addition, SJT significantly decreased the expression of the hypertrophy-associated transcription factor GATA binding factor 4 (GATA 4) induced by DOX. SJT also decreased hypertrophy-associated calcineurin and NFAT protein levels. Pretreatment with SJT significantly attenuated DOX-induced apoptosis-associated proteins such as Bax, caspase-3, and caspase-9 without affecting cell viability. In addition, the results of the in vivo study indicated that SJT significantly reduced the left ventricle/body weight ratio level. Administration of SJT reduced the expression of hypertrophy markers, such as ANP and BNP. These results suggest that SJT attenuates cardiac hypertrophy and heart failure induced by DOX or ISO through the inhibition of the calcineurin/NFAT/GATA4 pathway. Therefore, SJT may be a potential treatment for the prevention and treatment of cardiac hypertrophy that leads to heart failure.

5.
Proc Natl Acad Sci U S A ; 106(16): 6585-90, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19346471

RESUMO

The coupled binuclear "type 3" Cu sites are found in hemocyanin (Hc), tyrosinase (Tyr), and the multicopper oxidases (MCOs), such as laccase (Lc), and play vital roles in O(2) respiration. Although all type 3 Cu sites share the same ground state features, those of Hc/Tyr have very different ligand-binding properties relative to those of the MCOs. In particular, the type 3 Cu site in the MCOs (Lc(T3)) is a part of the trinuclear Cu cluster, and if the third (i.e., type 2) Cu is removed, the Lc(T3) site does not react with O(2). Density functional theory calculations indicate that O(2) binding in Hc is approximately 9 kcal mol(-1) more favorable than for Lc(T3). The difference is mostly found in the total energy difference of the deoxy states (approximately 7 kcal mol(-1)), where the stabilization of deoxy Lc(T3) derives from its long equilibrium Cu-Cu distance of approximately 5.5-6.5 A, relative to approximately 4.2 A in deoxy Hc/Tyr. The O(2) binding in Hc is driven by the electrostatic destabilization of the deoxy Hc site, in which the two Cu(I) centers are kept close together by the protein for facile 2-electron reduction of O(2). Alternatively, the lack of O(2) reactivity in Lc(T3) reflects the flexibility of the active site, capable of minimizing the electrostatic repulsion of the 2 Cu(I)s. Thus, the O(2) reactivity of the MCOs is intrinsic to the trinuclear Cu cluster, leading to different O(2) intermediates as required by its function of irreversible reduction of O(2) to H(2)O.


Assuntos
Cobre/metabolismo , Elétrons , Hemocianinas/química , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Oxirredutases/química , Sítios de Ligação , Hemocianinas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Estrutura Secundária de Proteína , Análise Espectral , Propriedades de Superfície
6.
Nutrients ; 13(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684415

RESUMO

YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 µM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the ß2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 µg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 µg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.


Assuntos
Broncodilatadores/farmacologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Extratos Vegetais/farmacologia , Pneumonia/metabolismo , Pneumonia/patologia , Animais , Biomarcadores , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Cromatografia Líquida de Alta Pressão , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Estrutura Molecular , Material Particulado/efeitos adversos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684485

RESUMO

Cardiac hypertrophy can lead to congestive heart failure and is a leading cause of morbidity and mortality worldwide. In recent years, it has been essential to find the treatment and prevention of cardiac hypertrophy. Betulinic acid (BA), the main active ingredient in many natural products, is known to have various physiological effects. However, as the potential effect of BA on cardiac hypertrophy and consequent renal dysfunction is unknown, we investigated the effect of BA on isoprenaline (ISO)-induced cardiac hypertrophy and related signaling. ISO was known to induce left ventricular hypertrophy by stimulating the ß2-adrenergic receptor (ß2AR). ISO was injected into Sprague Dawley rats (SD rats) by intraperitoneal injection once a day for 28 days to induce cardiac hypertrophy. From the 14th day onwards, the BA (10 or 30 mg/kg/day) and propranolol (10 mg/kg/day) were administered orally. The study was conducted in a total of 5 groups, as follows: C, control; Is, ISO (10 mg/kg/day); Pr, positive-control, ISO + propranolol (10 mg/kg/day); Bl, ISO + BA (10 mg/kg/day); Bh, ISO + BA (30 mg/kg/day). As a result, the total cardiac tissue and left ventricular tissue weights of the ISO group increased compared to the control group and were significantly reduced by BA treatment. In addition, as a result of echocardiography, the effect of BA on improving cardiac function, deteriorated by ISO, was confirmed. Cardiac hypertrophy biomarkers such as ß-MHC, ANP, BNP, LDH, and CK-MB, which were increased by ISO, were significantly decreased by BA treatment. Also, the cardiac function improvement effect of BA was confirmed to improve cardiac function by inhibiting calcineurin/NFATc3 signaling. Renal dysfunction is a typical complication caused by cardiac hypertrophy. Therefore, the study of renal function indicators, creatinine clearance (Ccr) and osmolality (BUN) was aggravated by ISO treatment but was significantly restored by BA treatment. Therefore, it is thought that BA in cardiac hypertrophy can be used as valuable data to develop as a functional material effective in improving cardiac-renal dysfunction.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Rim/fisiopatologia , Fatores de Transcrição NFATC/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais , Animais , Biomarcadores/sangue , Cardiomegalia/sangue , Cardiomegalia/patologia , Fibrose , Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Isoproterenol , Rim/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido Betulínico
8.
Nutrients ; 13(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34836432

RESUMO

Diabetic cardiovascular dysfunction is a representative complication of diabetes. Inflammation associated with the onset and exacerbation of type 2 diabetes mellitus (T2DM) is an essential factor in the pathogenesis of diabetic cardiovascular complications. Diabetes-induced myocardial dysfunction is characterized by myocardial fibrosis, which includes structural heart changes, myocardial cell death, and extracellular matrix protein accumulation. The mice groups in this study were divided as follows: Cont, control (db/m mice); T2DM, type 2 diabetes mellitus mice (db/db mice); Vil.G, db/db + vildagliptin 50 mg/kg/day, positive control, dipeptidyl peptidase-4 (DPP-4) inhibitor; Bla.C, db/db + blackcurrant 200 mg/kg/day. In this study, Bla.C treatment significantly improved the homeostatic model evaluation of glucose, insulin, and insulin resistance (HOMA-IR) indices and diabetic blood markers such as HbA1c in T2DM mice. In addition, Bla.C improved cardiac function markers and cardiac thickening through echocardiography. Bla.C reduced the expression of fibrosis biomarkers, elastin and type IV collagen, in the left ventricle of a diabetic cardiopathy model. Bla.C also inhibited TD2M-induced elevated levels of inflammatory cytokines in cardiac tissue (IL-6, IL-1ß, TNF-α, and TGF-ß). Thus, Bla.C significantly improved cardiac inflammation and cardiovascular fibrosis and dysfunction by blocking inflammatory cytokine activation signals. This showed that Bla.C treatment could ameliorate diabetes-induced cardiovascular complications in T2DM mice. These results provide evidence that Bla.C extract has a significant effect on the prevention of cardiovascular fibrosis, inflammation, and consequent diabetes-induced cardiovascular complications, directly or indirectly, by improving blood glucose profile.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Hipoglicemiantes/farmacologia , Miocárdio/patologia , Extratos Vegetais/farmacologia , Ribes , Animais , Glicemia/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Fibrose , Coração/efeitos dos fármacos , Camundongos
9.
Biochemistry ; 49(27): 5662-70, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20518498

RESUMO

Globins are heme-containing proteins that are best known for their roles in oxygen (O(2)) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O(2) sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN(-) do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O(2) levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 A) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O(2) in C. elegans via redox signaling and/or electron transfer.


Assuntos
Caenorhabditis elegans/metabolismo , Globinas/química , Globinas/metabolismo , Animais , Citoglobina , Heme/química , Heme/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Histidina , Cinética , Ligantes , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Células Receptoras Sensoriais
10.
Org Lett ; 5(4): 471-4, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12583746

RESUMO

[structure: see text] In consideration of competition between cation-pi and hydrogen bond interaction forces, we designed a novel receptor, 1,3,5-tris(pyrrolyl)benzene, which shows high selectivity for acetylcholine (ACh). The selectivity of the receptor for ACh over other ammonium cations is demonstrated by the ion-selective electrode (ISE) method in buffer solution. The binding free energy of the receptor with ACh in chloroform solution is measured to be 3.65 kcal/mol in the presence of chloride anion by nuclear magnetic resonance spectroscopy, and that in water is estimated to be much greater ( approximately 6 kcal/mol).


Assuntos
Acetilcolina/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Modelos Moleculares , Compostos de Amônio Quaternário/química , Acetilcolina/análise , Acetilcolina/isolamento & purificação , Benzeno/química , Eletrodos Seletivos de Íons , Substâncias Macromoleculares , Estrutura Molecular , Pirróis/química , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/isolamento & purificação , Soluções
11.
Antiviral Res ; 92(3): 470-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22024427

RESUMO

Human adenoviral conjunctivitis is a highly contagious eye infection affecting millions of people world-wide. If untreated, it can further develop into keratitis, corneal ulceration, scarring and possible blindness. Despite the significant patient morbidity and socio-economic costs, it is an unmet medical need with no FDA approved treatment. Here, we demonstrate the virucidal activity of NVC-422 (N,N-dichloro-2,2-dimethyltaurine) against adenovirus type 5 (Ad5) and investigated its mechanism of action of Ad5 inactivation. NVC-422 inhibits Ad5-induced loss of cell viability in vitro with 50% inhibitory concentration (IC(50)) ranging from 9 to 23 µM. NVC-422 does not cause any cytotoxicity at concentrations as high as 250 µM. Invitro, NVC-422 inactivates Ad5 but does not interfere with viral replication, indicating that NVC-422 acts on the extracellular adenovirus as a virucidal agent. NVC-422 inactivates Ad5 by oxidative inactivation of key viral proteins such as fiber and hexon as evidenced by SDS-PAGE, Western blotting and reversed-phase HPLC. These data, combined with measurements of the kinetics of the NVC-422 reactivity with selected amino acids, indicate that the changes in the viral proteins are caused by the selective oxidation of sulfur-containing amino acids. The conformational changes of the viral proteins result in the destruction of the viral morphology as shown by transmission electron microscopy. In summary, NVC-422 exhibits virucidal activity against Ad5 by the oxidative inactivation of key viral proteins, leading to the loss of viral integrity and infectivity.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Taurina/análogos & derivados , Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/ultraestrutura , Antivirais/química , Antivirais/uso terapêutico , Linhagem Celular , Conjuntivite Viral/tratamento farmacológico , Cisteína/química , Humanos , Metionina/química , Oxirredução , Compostos de Sulfidrila/química , Taurina/química , Taurina/farmacologia , Taurina/uso terapêutico , Proteínas Virais/química , Inativação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Dalton Trans ; (30): 3921-32, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18648693

RESUMO

In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O-O bonds, allowing the reductive cleavage of the O-O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in nature.


Assuntos
Cobre/química , Oxirredutases/química , Oxigênio/química , Água/química , Sítios de Ligação , Simulação por Computador , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular , Oxirredução
13.
J Am Chem Soc ; 129(43): 13127-36, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17918839

RESUMO

The multicopper oxidases (MCOs) utilize a blue type 1 (T1) copper site and a trinuclear Cu cluster composed of a type 2 (T2) and a binuclear type 3 (T3) site that together catalyze the four-electron reduction of O2 to H2O. Reaction of the fully reduced enzyme with O2 proceeds via two sequential two-electron steps generating the peroxy intermediate (PI) and the native intermediate (NI). While a detailed description of the geometric and electronic structure of NI has been developed, this has been more elusive for PI largely due to the diamagnetic nature of its ground state. Density functional theory (DFT) calculations have been used to correlate to spectroscopic data to generate a description of the geometric and electronic structure of PI. A highly conserved carboxylate residue near the T2 site is found to play a critical role in stabilizing the PI structure, which induces oxidation of the T2 and one T3 Cu center and strong superexchange stabilization via the peroxide bridge, allowing irreversible binding of O2 at the trinuclear Cu site. Correlation of PI to NI is achieved using a two-dimensional potential energy surface generated to describe the catalytic two-electron reduction of the peroxide O-O bond by the MCOs. It is found that the reaction is thermodynamically driven by the relative stability of NI and the involvement of the simultaneous two-electron-transfer process. A low activation barrier (calculated approximately 5-6 kcal/mol and experimental approximately 3-5 kcal/mol) is produced by the triangular topology of the trinuclear Cu cluster site, as this symmetry provides good donor-acceptor frontier molecular orbital (FMO) overlap. Finally, the O-O bond cleavage in the trinuclear Cu cluster can be achieved via either a proton-assisted or a proton-unassisted process, allowing the MCOs to function over a wide range of pH. It is found that while the proton helps to stabilize the acceptor O22- sigma* orbital in the proton-assisted process for better donor-acceptor FMO overlap, the third oxidized Cu center in the trinuclear site assumes the role as a Lewis acid in the proton-unassisted process for similarly efficient O-O bond cleavage.


Assuntos
Ceruloplasmina/química , Ceruloplasmina/metabolismo , Elétrons , Oxigênio/química , Oxigênio/metabolismo , Peróxidos/química , Simulação por Computador , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Prótons
14.
Proc Natl Acad Sci U S A ; 104(34): 13609-14, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17702865

RESUMO

Multicopper oxidases (MCOs) catalyze the 4e(-) reduction of O(2) to H(2)O. The reaction of the fully reduced enzyme with O(2) generates the native intermediate (NI), which undergoes a slow decay to the resting enzyme in the absence of substrate. NI is a fully oxidized form, but its spectral features are very different from those of the resting form (also fully oxidized), because the type 2 and the coupled-binuclear type 3 Cu centers in the O(2)-reducing trinuclear Cu cluster site are isolated in the resting enzyme, whereas these are all bridged by a micro(3)-oxo ligand in NI. Notably, the one azide-bound NI (NI(Az)) exhibits spectral features very similar to those of NI, in which the micro(3)-oxo ligand in NI has been replaced by a micro(3)-bridged azide. Comparison of the spectral features of NI and NI(Az), combined with density functional theory (DFT) calculations, allows refinement of the NI structure. The decay of NI to the resting enzyme proceeds via successive proton-assisted steps, whereas the rate-limiting step involves structural rearrangement of the micro(3)-oxo-bridge from inside to outside the cluster. This phenomenon is consistent with the slow rate of NI decay that uncouples the resting enzyme from the catalytic cycle, leaving NI as the catalytically relevant fully oxidized form of the MCO active site. The all-bridged structure of NI would facilitate electron transfer to all three Cu centers of the trinuclear cluster for rapid proton-coupled reduction of NI to the fully reduced form for catalytic turnover.


Assuntos
Cobre/química , Cobre/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Modelos Moleculares , Oxirredução , Oxirredutases/genética , Estrutura Terciária de Proteína , Rhus/enzimologia , Rhus/genética
15.
Acc Chem Res ; 40(7): 581-91, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17472331

RESUMO

Copper-cluster sites in biology exhibit unique spectroscopic features reflecting exchange coupling between oxidized Cu's and e (-) delocalization in mixed valent sites. These novel electronic structures play critical roles in O 2 binding and activation for electrophilic aromatic attack and H-atom abstraction, the 4e (-)/4H (+) reduction of O 2 to H 2O, and in the 2e (-)/2H (+) reduction of N 2O. These electronic structure/reactivity correlations are summarized below.


Assuntos
Catecol Oxidase/química , Cobre/química , Hemocianinas/química , Monofenol Mono-Oxigenase/química , Óxido Nitroso/química , Oxigênio/química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Oxirredução , Oxirredutases/química , Sulfetos/química
16.
Inorg Chem ; 44(22): 8076-86, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16241158

RESUMO

The ground-state electronic and magnetic properties of one of the possible structures of the trinuclear Cu(II) site in the native intermediate (NI) of the multicopper oxidases, the mu(3)-oxo-bridged structure, are evaluated using the C(3)-symmetric Cu(3)(II) complex, mu(3)O. mu(3)O is unique in that no ligand, other than the oxo, contributes to the exchange coupling. However, mu(3)O has a ferromagnetic ground state, inconsistent with that of NI. Therefore, two perturbations have been considered: protonation of the mu(3)-oxo ligand and relaxation of the mu(3)-oxo ligand into the Cu(3) plane. Notably, when the oxo ligand is sufficiently close to the Cu(3) plane (<0.3 Angstroms), the ground state of mu(3)O becomes antiferromagnetic and can be correlated to that of NI. In addition, the ferromagnetic (4)A ground state of mu(3)O is found from variable-temperature EPR to undergo a zero-field splitting (ZFS) of 2D = -5.0 cm(-1), which derives from the second-order anisotropic exchange. This allows evaluation of the sigma-to-pi excited-state exchange pathways and provides experimental evidence that the orbitally degenerate (2)E ground state of the antiferromagnetic mu(3)O would also undergo a ZFS by the first-order antisymmetric exchange that has the same physical origin as the anisotropic exchange. The important contribution of the mu(3)-oxo bridge to the ground-to-ground and ground-to-excited-state superexchange pathways that are responsible for the isotropic, antisymmetric, and anisotropic exchanges are discussed.


Assuntos
Cobre/química , Fenômenos Eletromagnéticos , Compostos Organometálicos/química , Oxirredutases/química , Modelos Moleculares
17.
J Am Chem Soc ; 127(39): 13680-93, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16190734

RESUMO

Multicopper oxidases catalyze the 4e- reduction of O2 to H2O. Reaction of the fully reduced enzyme with O2 produces the native intermediate (NI) that consists of four oxidized Cu centers, three of which form a trinuclear cluster site, all bridged by the product of full O2 reduction. The most characteristic feature of NI is the intense magnetic circular dichroism pseudo-A feature (a pair of temperature-dependent C-terms with opposite signs) associated with O --> Cu(II) ligand-to-metal charge transfer (LMCT) that derives from the strong Cu-O bonds in the trinuclear site. In this study, the two most plausible Cu-O structures of the trinuclear site, the tris-mu2-hydroxy-bridged and the mu3-oxo-bridged structures, are evaluated through spectroscopic and electronic structure studies on relevant model complexes, TrisOH and mu3O. It is found that the two components of a pseudo-A-term for TrisOH are associated with LMCT to the same Cu that are coupled by a metal-centered excited-state spin-orbit coupling (SOC), whereas for mu3O they are associated with LMCT to different Cu centers that are coupled by oxo-centered excited state SOC. Based on this analysis of the two candidate models, only the mu3-oxo-bridged structure is consistent with the spectroscopic properties of NI. The Cu-O sigma-bonds in the mu3-oxo-bridged structure would provide the thermodynamic driving force for the 4e- reduction of O2 and would allow the facile electron transfer to all Cu centers in the trinuclear cluster that is consistent with its involvement in the catalytic cycle.


Assuntos
Cobre/química , Oxirredutases/química , Dicroísmo Circular , Conformação Proteica , Temperatura
18.
J Am Chem Soc ; 127(40): 13832-45, 2005 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-16201804

RESUMO

Laccase is a multicopper oxidase that contains four Cu ions, one type 1 (T1), one type 2 (T2), and a coupled binuclear type 3 Cu pair (T3). The T2 and T3 centers form a trinuclear Cu cluster that is the active site for O2 reduction to H2O. A combination of spectroscopic and DFT studies on a derivative where the T1 Cu has been replaced by a spectroscopically innocent Hg2+ ion has led to a detailed geometric and electronic structure description of the resting trinuclear Cu cluster, complementing crystallographic results. The nature of the T2 Cu ligation has been elucidated; this site is three-coordinate with two histidines and a hydroxide over its functional pH range (stabilized by a large inductive effect, cluster charge, and a hydrogen-bonding network). Both the T2 and T3 Cu centers have open coordination positions oriented toward the center of the cluster. DFT calculations show that the negative protein pocket (four conserved Asp/Glu residues within 12 A) and the dielectric of the protein play important roles in the electrostatic stability and integrity of the highly charged, coordinatively unsaturated trinuclear cupric cluster. These tune the ligand binding properties of the cluster, leading to its high affinity for fluoride and its coordination unsaturation in aqueous media, which play a key role in its O2 reactivity.


Assuntos
Cobre/química , Lacase/química , Compostos Organometálicos/química , Deutério/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/normas , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , Modelos Químicos , Modelos Moleculares , Nitrogênio/química , Conformação Proteica , Padrões de Referência , Termodinâmica
19.
J Am Chem Soc ; 126(39): 12586-95, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15453791

RESUMO

The magnetic and electronic properties of a spin-frustrated ground state of an antiferromagnetically coupled 3-fold symmetric trinuclear copper complex (TrisOH) is investigated using a combination of variable-temperature variable-field magnetic circular dichroism (VTVH MCD) and powder/single-crystal EPR. Direct evidence for a low-lying excited S = (1)/(2) state from the zero-field split ground (2)E state is provided by the nonlinear dependence of the MCD intensity on 1/T and the nesting of the VTVH MCD isotherms. A consistent zero-field splitting (Delta) value of approximately 65 cm(-1) is obtained from both approaches. In addition, the strong angular dependence of the single-crystal EPR spectrum, with effective g-values from 2.32 down to an unprecedented 1.2, requires in-state spin-orbit coupling of the (2)E state via antisymmetric exchange. The observable EPR intensities also require lowering of the symmetry of the trimer structure, likely reflecting a magnetic Jahn-Teller effect. Thus, the Delta of the ground (2)E state is shown to be governed by the competing effects of antisymmetric exchange (G = 36.0 +/- 0.8 cm(-1)) and symmetry lowering (delta = 17.5 +/- 5.0 cm(-1)). G and delta have opposite effects on the spin distribution over the three metal sites where the former tends to delocalize and the latter tends to localize the spin of the S(tot) = (1)/(2) ground state on one metal center. The combined effects lead to partial delocalization, reflected by the observed EPR parallel hyperfine splitting of 74 x 10(-4) cm(-1). The origin of the large G value derives from the efficient superexchange pathway available between the ground d(x2-y2) and excited d(xy) orbitals of adjacent Cu sites, via strong sigma-type bonds with the in-plane p-orbitals of the bridging hydroxy ligands. This study provides significant insight into the orbital origin of the spin Hamiltonian parameters of a spin-frustrated ground state of a trigonal copper cluster.


Assuntos
Cobre/química , Ácido Edético/análogos & derivados , Ácido Edético/química , Cátions Bivalentes , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA