Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Spine J ; 24(8): 1519-1526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38437919

RESUMO

BACKGROUND CONTEXT: There are many models of lumbar disc degeneration, but mechanical stress-induced lumbar disc degeneration is rare. Here we propose a mechanical stress-induced lumbar disc degeneration model to better understand the molecular mechanism of lumbar disc degeneration under stress stimulation. PURPOSE: To design a new model of lumbar disc degeneration under mechanical stress. STUDY DESIGN: The anatomic approach of the oblique lateral approach to lumbar fusion surgery was used to design a longitudinal compression device across the vertebral body of the rabbit to impose longitudinal load on the lumbar disc. METHODS: New Zealand white rabbits (n=30) were used. Screws were used to cross the rabbits' lumbar vertebral bodies, and both sides of the screws were pressurized. Continuous compression was then performed for 28 days. Adjacent unpressurized lumbar discs serve as controls for pressurized lumbar discs. At 28 days after surgery, micro-computed tomography (CT) and magnetic resonance imaging (MRI) were performed on the rabbits' lumbar discs. After the imaging examination, lumbar disc samples were removed, Safranin-O fast green and immunofluorescence was performed to detect the expression level of intervertebral disc degeneration-related proteins. RESULTS: The CT results showed that the disc height did not decrease significantly after mechanical loading. The MRI results showed that the signals in the pressurized disc decreased 28 days after loading. The results of Safranin-O fast green showed that the cartilage component of the intervertebral disc after mechanical compression was significantly reduced. The immunofluorescence results showed that the expression of ADAMTS5 and MMP13 protein in the nucleus pulposus of the intervertebral disc after mechanical compression increased, while the expression of SOX9 decreased, and the difference was statistically significant. Aggrecan's protein expression decreased, but was not statistically significant. CONCLUSIONS: This study designed a reliable model of disc degeneration in rabbits. It is more likely to mimic disc compression in the human body. CLINICAL SIGNIFICANCE: This animal model can be used as a basic model to study the molecular physiological mechanisms of discogenic low back pain.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Vértebras Lombares , Estresse Mecânico , Animais , Coelhos , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Microtomografia por Raio-X
2.
Biomark Res ; 11(1): 39, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055817

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most prevalent age-related disease in the world. Chondrocytes undergo an age-dependent decline in their proliferation and synthetic capacity, which is the main cause of OA development. However, the intrinsic mechanism of chondrocyte senescence is still unclear. This study aimed to investigate the role of a novel long non-coding RNA (lncRNA), AC006064.4-201 in the regulation of chondrocyte senescence and OA progression and to elucidate the underlying molecular mechanisms. METHODS: The function of AC006064.4-201 in chondrocytes was assessed using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) and ß-galactosidase staining. The interaction between AC006064.4-201 and polypyrimidine tract-binding protein 1 (PTBP1), as well as cyclin-dependent kinase inhibitor 1B (CDKN1B), was evaluated using RPD-MS, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice models were used to investigate the role of AC006064.4-201 in post-traumatic and age-related OA in vivo. RESULTS: Our research revealed that AC006064.4-201 was downregulated in senescent and degenerated human cartilage, which could alleviate senescence and regulate metabolism in chondrocytes. Mechanically, AC006064.4-201 directly interacts with PTBP1 and blocks the binding between PTBP1 and CDKN1B mRNA, thereby destabilizing CDKN1B mRNA and decreasing the translation of CDKN1B. The in vivo experiments were consistent with the results of the in vitro experiments. CONCLUSIONS: The AC006064.4-201/PTBP1/CDKN1B axis plays an important role in OA development and provides new molecular markers for the early diagnosis and treatment of OA in the future. Schematic diagram of AC006064.4-201 mechanism. A schematic diagram of the mechanism underlying the effect of AC006064.4-201.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA