Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.277
Filtrar
1.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771496

RESUMO

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Assuntos
Fusão Celular/métodos , Quimera/genética , Células-Tronco Embrionárias/citologia , Células Híbridas , Camundongos , Ratos , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Haploidia , Masculino , Camundongos Endogâmicos , Ratos Endogâmicos F344 , Especificidade da Espécie , Inativação do Cromossomo X
2.
Immunity ; 53(6): 1315-1330.e9, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275896

RESUMO

Various vaccine strategies have been proposed in response to the global COVID-19 pandemic, each with unique strategies for eliciting immune responses. Here, we developed nanoparticle vaccines by covalently conjugating the self-assembled 24-mer ferritin to the receptor binding domain (RBD) and/or heptad repeat (HR) subunits of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike (S) protein. Compared to monomer vaccines, nanoparticle vaccines elicited more robust neutralizing antibodies and cellular immune responses. RBD and RBD-HR nanoparticle vaccinated hACE2 transgenic mice vaccinated with RBD and/or RBD-HR nanoparticles exhibited reduced viral load in the lungs after SARS-CoV-2 challenge. RBD-HR nanoparticle vaccines also promoted neutralizing antibodies and cellular immune responses against other coronaviruses. The nanoparticle vaccination of rhesus macaques induced neutralizing antibodies, and T and B cell responses prior to boost immunization; these responses persisted for more than three months. RBD- and HR-based nanoparticles thus present a promising vaccination approach against SARS-CoV-2 and other coronaviruses.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Ferritinas/imunologia , Helicobacter pylori/metabolismo , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Proteínas de Bactérias/química , Vacinas contra COVID-19/química , Ferritinas/química , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Pandemias , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química , Vacinação
3.
Nature ; 595(7868): 521-525, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290425

RESUMO

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

4.
EMBO J ; 41(19): e110988, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35942625

RESUMO

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator V/genética , Fator V/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nat Methods ; 20(4): 617-622, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823329

RESUMO

In deep-tissue multiphoton microscopy, diffusion and scattering of fluorescent photons, rather than ballistic emanation from the focal point, have been a confounding factor. Here we report on a 2.17-g miniature three-photon microscope (m3PM) with a configuration that maximizes fluorescence collection when imaging in highly scattering regimes. We demonstrate its capability by imaging calcium activity throughout the entire cortex and dorsal hippocampal CA1, up to 1.2 mm depth, at a safe laser power. It also enables the detection of sensorimotor behavior-correlated activities of layer 6 neurons in the posterior parietal cortex in freely moving mice during single-pellet reaching tasks. Thus, m3PM-empowered imaging allows the study of neural mechanisms in deep cortex and subcortical structures, like the dorsal hippocampus and dorsal striatum, in freely behaving animals.


Assuntos
Hipocampo , Microscopia de Fluorescência por Excitação Multifotônica , Camundongos , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Córtex Cerebral , Corantes , Fótons
6.
Genome Res ; 32(5): 864-877, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361625

RESUMO

The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species' diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Assuntos
Biodiversidade , Saccharomyces cerevisiae , Ásia , Humanos , Filogenia , Saccharomyces cerevisiae/genética , Taiwan , Sequenciamento Completo do Genoma
7.
Plant Physiol ; 196(1): 273-290, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38781292

RESUMO

Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Senescência Vegetal , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Senescência Vegetal/genética , Autofagia/genética , Plântula/genética , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Retículo Endoplasmático/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Perfilação da Expressão Gênica , Carboxipeptidases
8.
Plant Physiol ; 195(2): 1256-1276, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391271

RESUMO

The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Tricomas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação/genética , Fenótipo , Microtúbulos/metabolismo , Forma Celular/genética , Regiões Promotoras Genéticas/genética
9.
Plant Physiol ; 196(2): 1489-1501, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889048

RESUMO

Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, systemic acquired resistance deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, 4 uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is interchangeable with CBP60b, suggesting clade-specific functionalization. We further show that the function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest that CBP60b clade TFs are functionally conserved in evolution and positively mediate immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Filogenia , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Bryopsida/genética , Bryopsida/imunologia
10.
Plant Cell ; 34(8): 3006-3027, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35579372

RESUMO

The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
11.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
12.
Traffic ; 23(11): 526-537, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109347

RESUMO

The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Pequeno RNA não Traduzido , Glicemia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , RNA Longo não Codificante/genética
13.
Plant J ; 116(3): 756-772, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516999

RESUMO

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Ácidos Indolacéticos , Alelos , Diferenciação Celular , Morfogênese/genética , Plantas Geneticamente Modificadas/genética , Mutação , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
14.
J Am Chem Soc ; 146(30): 20649-20659, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018421

RESUMO

When catalytic reactions are interfered with by radiation sources, thorium clusters are promising as potential catalysts due to their superior radiation resistance. However, there is currently very little research on the design synthesis and catalytic application of radiation-stable thorium clusters. In this work, we have elaborately engineered and fabricated three high-nuclear thorium cluster catalysts denoted as Th12L3-MA12, Th12L3-MA6-BF6, and Th12L3-Fcc12, which did not undergo any significant alterations in their molecular structures and compositions after irradiation with 690 kGy γ-rays. We systematically investigated the photocatalytic/thermocatalytic properties of these radiation-resistant thorium clusters for the first time and found that γ-rays could not alter their catalytic activities. In addition, it was found that ligand engineering could modulate the catalytic activity of thorium clusters, thus expanding the range of catalytic applications of thorium clusters, including reduction reactions (nitroarene reduction) and some oxidation reactions (N-heterocyclic oxidative dehydrogenation and diphenylmethane oxidation). Meanwhile, all of these organic transformation reactions achieved a >80% conversion and nearly 100% product selectivity. Radiation experiments combined with DFT calculations showed that the synergistic catalysis of thorium-oxo core and ligands led to the generation of specific active species (H+, O2•-, or tBuO/tBuOO•) and activation of substrate molecules, thus achieving superior catalytic performance. This work is not only the first to develop radiation-resistant thorium cluster catalysts to perform efficient redox reactions but also provides design ideas for the construction of high-nuclearity thorium clusters under mild conditions.

15.
J Am Chem Soc ; 146(5): 3396-3404, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266485

RESUMO

Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.

16.
J Am Chem Soc ; 146(37): 25832-25840, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231362

RESUMO

The connectivity (valency) of building blocks for constructing 3D covalent organic frameworks (COFs) has long been limited to 4, 6, 8, and 12. Developing a higher connectivity remains a great challenge in the field of COF structural design. Herein, this work reports a hierarchical expansion strategy for making 16-connected building blocks to construct 3D COFs with sqc topology. The [16 + 2] construction achieved by condensation between a 16-connected carbazolyl dicyanobenzene-based building block (CzTPN) and linear diamino linkers (BD or Bpy) affords two 3D COFs (named CzBD COF and CzBpy COF). Furthermore, attributed to the well-organized donor-acceptor (D-A) heterojunction, the Ni chelated CzBpy COF (Ni@CzBpy COF) exhibits excellent performance for photoredox/Ni dual catalytic C(sp3)-C(sp2) cross-coupling of alkyltrifluoroborates with aryl halides, achieving a maximum 98% conversion and 94% yield for various substrates. This work developed the first case of high-connectivity COFs bearing 16-connected units, which is the highest connectivity reported until now, and achieved efficient photocatalysis applications, thus greatly enriching the possibilities of COFs.

17.
Mol Cancer ; 23(1): 143, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992675

RESUMO

BACKGROUND: Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS: A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS: In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS: Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM , Neoplasias Hepáticas , NF-kappa B , RNA Circular , Proteínas de Ligação a RNA , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , NF-kappa B/metabolismo , Camundongos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Progressão da Doença , Apoptose/genética , Prognóstico , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Masculino , Feminino , Camundongos Nus
18.
Plant Cell Physiol ; 65(8): 1231-1244, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38757817

RESUMO

To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.


Assuntos
Regulação da Expressão Gênica de Plantas , Homeostase , Marchantia , Meristema , Oxirredução , Proteínas de Plantas , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação/genética , Ácidos Indolacéticos/metabolismo
19.
Apoptosis ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394530

RESUMO

Myocardial fibrosis is a typical pathological manifestation of hypertension. However, the exact role of sirtuin 7 (SIRT7) in myocardial remodeling remains largely unclear. Here, spontaneously hypertensive rats (SHRs) and angiotensin (Ang) II-induced hypertensive mice were pretreated with recombinant adeno-associated virus (rAAV)-SIRT7, copper chelator tetrathiomolybdate (TTM) or copper ionophore elesclomol, respectively. Compared with normotensive controls, reduced SIRT7 expression and augmented cuproptosis were observed in hearts of hypertensive rats and mice with decreased FDX1 levels and increased HSP70 levels. Notably, intervention with rAAV-SIRT7 and TTM strikingly prevented DLAT oligomers aggregation, and elevated ATP7A and TOM20 expressions, contributing to the alleviation of cuproptosis, mitochondrial injury, myocardial remodeling and heart dysfunction in spontaneously hypertensive rats and Ang II-induced hypertensive mice. In cultured rat primary cardiac fibroblasts (CFs), rhSIRT7 alleviated CuCl2, Ang II or elesclomol-induced cuproptosis and fibroblast activation by blunting DLAT oligomers accumulation and downregulating α-SMA expression. Additionally, conditioned medium from rhSIRT7-pretreated CFs remarkably mitigated cellular hypertrophy and mitochondrial impairments of neonatal rat cardiomyocytes, as well as cell migration and polarization of RAW 264.7 macrophages. Importantly, verteporfin reduced CuCl2-induced cuproptosis, mitochondrial injury and fibrotic activation in CFs. Knockdown of ATP7A with si-ATP7A blocked cellular protective effects of rhSIRT7 and verteporfin in CFs. In conclusion, SIRT7 attenuates cuproptosis, myocardial fibrosis and heart dysfunction in hypertension through the modulation of YAP/ATP7A signaling. Targeting SIRT7 is of vital importance for developing therapeutic strategies in hypertension and hypertensive heart disorders.

20.
Oncologist ; 29(1): e59-e67, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37311049

RESUMO

BACKGROUND: The 8th edition of the American Joint Committee on Cancer (AJCC) staging system for medullary thyroid cancer (MTC) was implemented in 2018. However, its ability to predict prognosis remains controversial. PATIENTS AND METHODS: Patient data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database and multicenter datasets. Overall survival was the primary end-point of the present study. The concordance index (C-index) was used to assess the efficacy of various models to predict prognostic outcomes. RESULTS: A total of 1450 MTC patients were selected from the SEER databases and 349 in the multicenter dataset. According to the AJCC staging system, there were no significant survival differences between T4a and T4b categories (P = .299). The T4 category was thus redefined as T4a' category (≤3.5 cm) and T4b' category (>3.5 cm) based on the tumor size, which was more powerful for distinguishing the prognosis (P = .003). Further analysis showed that the T category was significantly associated with both lymph node (LN) location and count (P < .001). Therefore, the N category was modified by combining the LN location and count. Finally, the above-mentioned novel T and N categories were adopted to modify the 8th AJCC classification using the recursive partitioning analysis principle, and the modified staging system outperformed the current edition (C-index, 0.811 vs. 0.792). CONCLUSIONS: The 8th AJCC staging system was improved based on the intrinsic relationship among the T category, LN location, and LN count, which would have a positive impact on the clinical decision-making process and appropriate surveillance.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Humanos , Estadiamento de Neoplasias , Programa de SEER , Prognóstico , Carcinoma Neuroendócrino/patologia , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA