Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Magn Reson Med ; 91(3): 1087-1098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946544

RESUMO

PURPOSE: The clinical diagnosis and classification of Alexander disease (AxD) relies in part on qualitative neuroimaging biomarkers; however, these biomarkers fail to distinguish and discriminate different subtypes of AxD, especially in the presence of overlap in clinical symptoms. To address this gap in knowledge, we applied neurite orientation dispersion and density imaging (NODDI) to an innovative CRISPR-Cas9 rat genetic model of AxD to gain quantitative insights into the neural substrates and brain microstructural changes seen in AxD and to potentially identify novel quantitative NODDI biomarkers of AxD. METHODS: Multi-shell DWI of age- and sex-matched AxD and wild-type Sprague Dawley rats (n = 6 per sex per genotype) was performed and DTI and NODDI measures calculated. A 3 × 2 × 2 analysis of variance model was used to determine the effect of genotype, biological sex, and laterality on quantitative measures of DTI and NODDI across regions of interest implicated in AxD. RESULTS: There is a significant effect of genotype in the amygdala, hippocampus, neocortex, and thalamus in measures of both DTI and NODDI brain microstructure. A genotype by biological sex interaction was identified in DTI and NODDI measures in the corpus callosum, hippocampus, and neocortex. CONCLUSION: We present the first application of NODDI to the study of AxD using a rat genetic model of AxD. Our analysis identifies alterations in NODDI and DTI measures to large white matter tracts and subcortical gray nuclei. We further identified genotype by sex interactions, suggesting a possible role for biological sex in the neuropathogenesis of AxD.


Assuntos
Doença de Alexander , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Doença de Alexander/patologia , Ratos Sprague-Dawley , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/patologia , Biomarcadores , Imagem de Difusão por Ressonância Magnética
2.
J Vasc Interv Radiol ; 35(6): 900-908.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508448

RESUMO

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.


Assuntos
Doxorrubicina , Camundongos Endogâmicos BALB C , Microambiente Tumoral , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Linhagem Celular Tumoral , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/cirurgia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias da Mama/patologia , Transdutores , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Polietilenoglicóis/química , Modelos Animais de Doenças , Antígenos Comuns de Leucócito
3.
Mol Genet Genomics ; 298(3): 755-766, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027022

RESUMO

Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.


Assuntos
Gossypium , Gossipol , Gossypium/metabolismo , Gossipol/metabolismo , Filogenia , Genes myb/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Cell Commun Signal ; 21(1): 81, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081542

RESUMO

BACKGROUND: Both IGF-1R/PI3K/AKT/mTOR and Hippo pathways are crucial for breast cancer stem cells (BCSCs). However, their interplay remains unclear. METHODS: Four triple negative breast cancer cell lines derived from CSC of two patient-derived xenografts (PDXs), AS-B145, AS-B145-1R, AS-B244, and AS-B244-1R, were used to elucidate the role of YAP in BCSCs. YAP silenced BCSCs were analyzed by cell proliferation, aldehyde dehydrogenase (ALDH) activity, mammosphere formation, and tumorigenesis. The effects of modulating IGF-1R and IGF-1 on YAP expression and localization were evaluated. The clinical correlation of YAP and IGF-1R signaling with the overall survival (OS) of 7830 breast cancer patients was analyzed by KM plotter. RESULTS: Knockdown of YAP abates the viability and stemness of BCSCs in vitro and tumorigenicity in vivo. Depletion of IGF-1R by shRNA or specific inhibitor decreases YAP expression. In contrast, IGF-1 addition upregulates YAP and enhances its nuclear localization. YAP overexpression increased the mRNA level of IGF-1, but not IGF-1R. Data mining of clinical breast cancer specimens revealed that basal-like breast cancer patients with higher level of IGF-1 and YAP exhibit significantly shorter OS. CONCLUSIONS: YAP contributes to stemness features of breast cancer in vitro and in vivo. The expression and localization of YAP was regulated by IGF-1R and YAP expression in turns upregulates IGF-1, but not IGF-1R. Clinically, higher level of YAP and IGF-1 significantly correlated with shorter OS in basal-like breast cancer. Taken together, these findings suggest the clinical relevance of interplay between YAP and IGF-1/IGF-1R pathway in sustaining the properties of BCSCs. Video Abstract.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Hippo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Brain ; 145(2): 500-516, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203088

RESUMO

N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder, suggesting that aberrant cytosolic-to-endoplasmic reticulum flux of acetyl-CoA can be a mechanistic driver for the development of autism spectrum disorder. We therefore generated a SLC25A1 neuron transgenic mouse with overexpression specifically in the forebrain neurons. The mice displayed autistic-like behaviours with a jumping stereotypy. They exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia and altered synaptic plasticity and morphology. Finally, quantitative proteomic and acetyl-proteomic analyses revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosolic-to-endoplasmic reticulum acetyl-CoA flux and the development of an autistic-like phenotype.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transportadores de Ânions Orgânicos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Ácido Cítrico , Humanos , Camundongos , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/genética , Fenótipo , Proteômica
6.
Cell Mol Life Sci ; 79(7): 348, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670884

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with high morbidity and mortality worldwide. Although several mechanisms to account for deleterious immune effects were proposed, molecular description for the underlying alveolar structural alterations for COPD is lacking. Here, silencing of α1,6-fucosyltransferase (Fut8), the enzyme for core-fucosylation and highly expressed in lung stem cells, resulted in alveolar structural changes in lung organoids, recapitulating COPD. Site-specific mass spectrometry analysis demonstrated that the secreted protein acidic and rich in cysteine (SPARC), which binds collagen, contains a core-fucosylation site in its VCSNDNcfK glycopeptide. Biacore assay showed markedly reduced collagen binding of SPARC lacking core fucosylation. Molecular dynamics analysis revealed that core fucosylation of SPARC-induced dynamic conformational changes in its N-glycan, allowing terminal galactose and N-acetylglucosamine to interact with K150, P261 and H264 residues, thereby promoting collagen binding. Site-specific mutagenesis of these residues also resulted in low affinity for collagen binding. Moreover, loss of collagen and decline of core fucosylation were observed in COPD lung tissues. These findings provide a new mechanistic insight into the role of core fucosylation of SPARC in cell-matrix communication and contribution to the abnormal alveolar structures in COPD.


Assuntos
Osteonectina , Doença Pulmonar Obstrutiva Crônica , Colágeno/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Humanos , Osteonectina/genética , Osteonectina/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética
7.
Biol Res ; 56(1): 7, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843032

RESUMO

BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs.


Assuntos
Saccharomyces cerevisiae , Peixe-Zebra , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana , Peixe-Zebra/genética , Movimento Celular , Diferenciação Celular , Neovascularização Fisiológica
8.
Adv Exp Med Biol ; 1394: 51-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587381

RESUMO

Major advances have been made in our understanding of CNS tumors, especially glioma, however, the survival of patients with malignant glioma remains poor. While radiation and chemotherapy have increased overall survival, glioblastoma multiforme (GBM) still has one of the worst 5-year survival rates of all human cancers. Here, in this chapter, the authors review the abrogation of the immune system in the tumor setting, revealing many plausible targets for therapy and the current immunotherapy treatment strategies employed. Notably, glioma has also been characterized as a subset of primary spinal cord tumor and current treatment recommendations are outlined here.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias da Medula Espinal , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias da Medula Espinal/patologia , Glioblastoma/patologia , Imunoterapia , Encéfalo/patologia , Imunidade Adaptativa , Imunidade Celular
9.
Proc Natl Acad Sci U S A ; 117(44): 27435-27444, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087559

RESUMO

Conversion of human pluripotent stem cells from primed to naïve state is accompanied by altered transcriptome and methylome, but glycosphingolipid (GSL) profiles in naïve human embryonic stem cells (hESCs) have not been systematically characterized. Here we showed a switch from globo-(SSEA-3, SSEA-4, and Globo H) and lacto-series (fucosyl-Lc4Cer) to neolacto-series GSLs (SSEA-1 and H type 2 antigen), along with marked down-regulation of ß-1,3-galactosyltransferase (B3GALT5) upon conversion to naïve state. CRISPR/Cas9-generated B3GALT5-knockout (KO) hESCs displayed an altered GSL profile, increased cloning efficiency and intracellular Ca2+, reminiscent of the naïve state, while retaining differentiation ability. The altered GSLs could be rescued through overexpression of B3GALT5. B3GALT5-KO cells cultured with 2iLAF exhibited naïve-like transcriptome, global DNA hypomethylation, and X-chromosome reactivation. In addition, B3GALT5-KO rendered hESCs more resistant to calcium chelator in blocking entry into naïve state. Thus, loss of B3GALT5 induces a distinctive state of hESCs displaying unique GSL profiling with expression of neolacto-glycans, increased Ca2+, and conducive for transition to naïve pluripotency.


Assuntos
Diferenciação Celular , Galactosiltransferases/metabolismo , Glicoesfingolipídeos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células-Tronco Embrionárias , Galactosiltransferases/genética , Técnicas de Silenciamento de Genes , Humanos
10.
Magn Reson Med ; 87(2): 820-836, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34590731

RESUMO

PURPOSE: Oxidative stress and downstream effectors have emerged as important pathological processes that drive psychiatric illness, suggesting that antioxidants may have a therapeutic role in psychiatric disease. However, no imaging biomarkers are currently available to track therapeutic response. The purpose of this study was to examine whether advanced DWI techniques are able to sensitively detect the potential therapeutic effects of the antioxidant N-acetylcysteine (NAC) in a Disc1 svΔ2 preclinical rat model of psychiatric illness. METHODS: Male and female Disc1 svΔ2 rats and age-matched, sex-matched Sprague-Dawley wild-type controls were treated with a saline vehicle or NAC before ex vivo MRI acquisition at P50. Imaging data were fit to DTI and neurite orientation dispersion and density imaging models and analyzed for region-specific changes in quantitative diffusion metrics. Brains were further processed for cellular quantification of microglial density and morphology. All experiments were repeated for Disc1 svΔ2 rats exposed to chronic early-life stress to test how gene-environment interactions might alter effectiveness of NAC therapy. RESULTS: The DTI and neurite orientation dispersion and density imaging analyses demonstrated amelioration of early-life, sex-specific neural microstructural deficits with concomitant differences in microglial morphology across multiple brain regions relevant to neuropsychiatric illness with NAC treatment, but only in male Disc1 svΔ2 rats. Addition of chronic early-life stress reduced the ability of NAC to restore microstructural deficits. CONCLUSION: These findings provide evidence for a treatment pathway targeting endogenous antioxidant capacity, and the clinical translational utility of neurite orientation dispersion and density imaging microstructural imaging to sensitively detect microstructural alterations resulting from antioxidant treatment.


Assuntos
Antioxidantes , Imagem de Tensor de Difusão , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Masculino , Proteínas do Tecido Nervoso , Neuroimagem , Ratos , Ratos Sprague-Dawley
11.
J Biomed Sci ; 29(1): 105, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36517806

RESUMO

BACKGROUND: In endothelial cells, phospholipase C (PLC) ß1-activated Ca2+ is a crucial second messenger for the signaling pathways governing angiogenesis. PLCß1 is inactivated by complexing with an intracellular protein called translin-associated factor X (TRAX). This study demonstrates specific interactions between Globo H ceramide (GHCer) and TRAX, which highlight a new angiogenic control through PLCß1 activation. METHODS: Globo-series glycosphingolipids (GSLs), including GHCer and stage-specific embryonic antigen-3 ceramide (SSEA3Cer), were analyzed using enzyme-linked immunosorbent assay (ELISA) and Biacore for their binding with TRAX. Angiogenic activities of GSLs in human umbilical vein endothelial cells (HUVECs) were evaluated. Molecular dynamics (MD) simulation was used to study conformations of GSLs and their molecular interactions with TRAX. Fluorescence resonance energy transfer (FRET) analysis of HUVECs by confocal microscopy was used to validate the release of PLCß1 from TRAX. Furthermore, the in vivo angiogenic activity of extracellular vesicles (EVs) containing GHCer was confirmed using subcutaneous Matrigel plug assay in mice. RESULTS: The results of ELISA and Biacore analysis showed a stable complex between recombinant TRAX and synthetic GHCer with KD of 40.9 nM. In contrast, SSEA3Cer lacking a fucose residue of GHCer at the terminal showed ~ 1000-fold decrease in the binding affinity. These results were consistent with their angiogenic activities in HUVECs. The MD simulation indicated that TRAX interacted with the glycan moiety of GHCer at amino acid Q223, Q219, L142, S141, and E216. At equilibrium the stable complex maintained 4.6 ± 1.3 H-bonds. TRAX containing double mutations with Q223A and Q219A lost its ability to interact with GHCer in both MD simulation and Biacore assays. Removal of the terminal fucose from GHCer to become SSEA3Cer resulted in decreased H-bonding to 1.2 ± 1.0 by the MD simulation. Such specific H-bonding was due to the conformational alteration in the whole glycan which was affected by the presence or absence of the fucose moiety. In addition, ELISA, Biacore, and in-cell FRET assays confirmed the competition between GHCer and PLCß1 for binding to TRAX. Furthermore, the Matrigel plug assay showed robust vessel formation in the plug containing tumor-secreted EVs or synthetic GHCer, but not in the plug with SSEA3Cer. The FRET analysis also indicated the disruption of colocalization of TRAX and PLCß1 in cells by GHCer derived from EVs. CONCLUSIONS: Overall, the fucose residue in GHCer dictated the glycan conformation for its complexing with TRAX to release TRAX-sequestered PLCß1, leading to Ca2+ mobilization in endothelial cells and enhancing angiogenesis in tumor microenvironments.


Assuntos
Proteínas de Ligação a DNA , Fucose , Células Endoteliais da Veia Umbilical Humana , Animais , Humanos , Camundongos , Ceramidas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fucose/genética , Fucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
12.
Eur Radiol ; 32(6): 3683-3692, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35029734

RESUMO

Interactions between intestinal microbiota and the central nervous system profoundly influence brain structure and function. Over the past 15 years, intense research efforts have uncovered the significant association between gut microbial dysbiosis and neurologic, neurodegenerative, and psychiatric disorders; however, our understanding of the effect of gut microbiota on quantitative neuroimaging measures of brain microstructure and function remains limited. Many current gut microbiome studies specifically focus on discovering correlations between specific microbes and neurologic disease states that, while important, leave critical mechanistic questions unanswered. To address this significant gap in knowledge, quantitative structural and functional brain imaging has emerged as a vital bridge and as the next step in understanding how the gut microbiome influences the brain. In this review, we examine the current state-of-the-art, raise awareness of this important topic, and aim to highlight immense new opportunities-in both research and clinical imaging-for the imaging community in this emerging field of study. Our review also highlights the potential for preclinical imaging of germ-free and gnotobiotic models to significantly advance our understanding of the causal mechanisms by which the gut microbiome alters neural microstructure and function. KEY POINTS: • Alterations to the gut microbiome can significantly influence brain structure and function in health and disease. • Quantitative neuroimaging can help elucidate the effect of gut microbiota on the brain and with future translational advances, neuroimaging will be critical for both diagnostic assessment and therapeutic monitoring.


Assuntos
Microbioma Gastrointestinal , Encéfalo/diagnóstico por imagem , Disbiose/etiologia , Neuroimagem Funcional , Humanos , Neuroimagem
13.
Genomics ; 113(3): 1157-1169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689783

RESUMO

Alkaline stress is one of the abiotic stresses limiting cotton production. Though RNA-Seq analyses, have been conducted to investigate genome-wide gene expression in response to alkaline stress in plants, the response of sodium bicarbonate (NaHCO3) stress-related genes in cotton has not been reported. To explore the mechanisms of cotton response to this alkaline stress, we used next-generation sequencing (NGS) technology to study transcriptional changes of cotton under NaHCO3 alkaline stress. A total of 18,230 and 11,177 differentially expressed genes (DEGs) were identified in cotton roots and leaves, respectively. Gene ontology (GO) analysis indicated the enrichment of DEGs involved in various stimuli or stress responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs associated with plant hormone signal transduction, amino acid biosynthesis, and biosynthesis of secondary metabolites were regulated in response to the NaHCO3 stress. We further analyzed genes enriched in secondary metabolic pathways and found that secondary metabolites were regulated to eliminate the reactive oxygen species (ROS) and improve the cotton tolerance to the NaHCO3 stress. In this study, we learned that the toxic effect of NaHCO3 was more profound than that of NaOH at the same pH. Thus, Na+, HCO3- and pH had a great impact on the growth of cotton plant. The novel biological pathways and candidate genes for the cotton tolerance to NaHCO3 stress identified from the study would be useful in the genetic improvement of the alkaline tolerance in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Bicarbonato de Sódio , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bicarbonato de Sódio/metabolismo , Bicarbonato de Sódio/farmacologia , Estresse Fisiológico/genética , Transcriptoma
14.
Planta ; 255(1): 23, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923605

RESUMO

MAIN CONCLUSION: GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.


Assuntos
Fibra de Algodão , Filogenia
15.
J Biomed Sci ; 28(1): 7, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33423678

RESUMO

BACKGROUND: The comparative evolutionary genomics analysis was used to study the functions of novel Ka/Ks-predicted human exons in a zebrafish model. The Yulink (MIOS, Entrez Gene: 54,468), a conserved gene from zebrafish to human with WD40 repeats at N-terminus, was identified and found to encode an 875 amino acid in human. The biological function of this Yulink gene in cardiomyocytes remains unexplored. The purpose of this study is to determine the involvement of Yulink in the functions of cardiomyocytes and to investigate its molecular regulatory mechanism. METHODS: Knockdown of Yulink was performed using morpholino or shRNA in zebrafish, mouse HL-1 cardiomyocytes, and human iPSC-derived cardiomyocytes. The expression levels of mRNA and protein were quantified by qPCR and western blots. Other methods including DNA binding, ligand uptake, agonists treatment and Ca2+ imaging assays were used to study the molecular regulatory mechanism by Yulink. Statistical data were shown as mean ± SD or mean ± standard error. RESULTS: The knockdown of yulink with three specific morpholinos in zebrafish resulted in cardiac dysfunctions with pericardial edema, decreased heart beats and cardiac output. The Yulink knockdown in mouse HL-1 cardiomyocytes disrupted Ca2+ cycling, reduced DNA binding activity of PPARγ (peroxisome proliferator-activated receptor gamma) and resulted in a reduction of Serca2 (sarcoplasmic reticulum Ca2+ ATPase 2) expression. Expression of Serca2 was up-regulated by PPARγ agonists and down-regulated by PPARγ-shRNA knockdown, suggesting that Yulink regulates SERCA2 expression through PPARγ in mouse HL-1 cardiomyocytes. On the other hand, YULINK, PPARγ or SERCA2 over-expression rescued the phenotypes of Yulink KD cells. In addition, knockdown of YULINK in human iPSC-derived cardiomyocytes also disrupted Ca2+ cycling via decreased SERCA2 expression. CONCLUSIONS: Overall, our data showed that Yulink is an evolutionarily conserved gene from zebrafish to human. Mechanistically Yulink regulated Serca2 expression in cardiomyocytes, presumably mediated through PPARγ nuclear entry. Deficiency of Yulink in mouse and human cardiomyocytes resulted in irregular Ca2+ cycling, which may contribute to arrhythmogenesis.


Assuntos
Técnicas de Silenciamento de Genes , Miócitos Cardíacos/fisiologia , Animais , Humanos , Camundongos , Peixe-Zebra
16.
Mater Today (Kidlington) ; 50: 149-169, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34987308

RESUMO

Triple negative breast cancer is difficult to treat effectively, due to its aggressiveness, drug resistance, and lack of the receptors required for hormonal therapy, particularly at the metastatic stage. Here, we report the development and evaluation of a multifunctional nanoparticle formulation containing an iron oxide core that can deliver doxorubicin, a cytotoxic agent, and polyinosinic:polycytidylic acid (Poly IC), a TLR3 agonist, in a targeted and simultaneous fashion to both breast cancer and dendritic cells. Endoglin-binding peptide (EBP) is used to target both TNBC cells and vasculature epithelia. The nanoparticle demonstrates favorable physicochemical properties and a tumor-specific targeting profile. The nanoparticle induces tumor apoptosis through multiple mechanisms including direct tumor cell killing, dendritic cell-initiated innate and T cell-mediated adaptive immune responses. The nanoparticle markedly inhibits tumor growth and metastasis and substantially extends survival in an aggressive and drug-resistant metastatic mouse model of triple negative breast cancer (TNBC). This study points to a promising platform that may substantially improve the therapeutic efficacy for treating metastatic TNBC.

17.
Cereb Cortex ; 30(5): 2948-2960, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31833550

RESUMO

In Alzheimer's disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI-but not cortical thickness-was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Espessura Cortical do Cérebro , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Disfunção Cognitiva/psicologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
18.
Ecotoxicol Environ Saf ; 210: 111892, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429317

RESUMO

Human activities have generated air pollution, with extremely small particles (PM 2.5, particulate matter less than 2.5 µm in diameter) and liquid droplets, which become a menace to human health. Among the pollutants, polycyclic aromatic hydrocarbons (PAHs), which enhance the risks of pulmonary dysfunction and cancer development, have been extensively studied. Numerous studies have addressed the effects of PAHs on the respiratory system, whereas the effects on lung stem/progenitor cells remain unknown. Here, we provide evidence that benzo[a]pyrene (BaP), a major toxic PAH, induces fibrotic changes with a loss of α-1,6-fucosylation in CD54+CD157+CD45- cells (lung stem cells). In studies with aryl hydrocarbon receptor (AHR) antagonist, we found that these effects by BaP are independent of the canonical AHR pathway. In addition, these BaP-induced fibrotic changes are reduced by TGF-ß antagonist, suggesting an alternative pathway of BaP toxicity is different from other PAH/AHR signaling pathways. Finally, it was observed that BaP impairs the spheroid formation and the podoplanin expression of CD54+CD157+CD45- cells, indicating that BaP suppresses the differentiation of lung stem cells. Taken together, our findings reveal specific BaP-induced injuries in CD54+CD157+CD45- cells.


Assuntos
Poluentes Atmosféricos/toxicidade , Benzo(a)pireno/toxicidade , Pulmão/citologia , Células-Tronco/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibrose , Camundongos , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Células-Tronco/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores
19.
BMC Genomics ; 21(1): 470, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640982

RESUMO

BACKGROUND: Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS: In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION: This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.


Assuntos
Cromossomos de Plantas , Gossypium/genética , Mapeamento Cromossômico , Evolução Molecular , Genes de Plantas , Sintenia , Fatores de Transcrição/genética
20.
BMC Plant Biol ; 20(1): 88, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103722

RESUMO

BACKGROUND: Gossypol is a specific secondary metabolite in Gossypium species. It not only plays a critical role in development and self-protection of cotton plants, but also can be used as important anti-cancer and male contraceptive compound. However, due to the toxicity of gossypol for human beings and monogastric animals, the consumption of cottonseeds was limited. To date, little is known about the gossypol metabolism in cotton plants. RESULTS: In this study, we found that cotyledon was the primary source of gossypol at the seed germination stage. But thereafter, it was mainly originated from developing roots. Grafting between glanded and glandless cotton as well as sunflower rootstocks and cotton scion revealed that gossypol was mainly synthesized in the root systems of cotton plants. And both glanded and glandless cotton roots had the ability of gossypol biosynthesis. But the pigment glands, the main storage of gossypol, had indirect effects on gossypol biosynthesis. In vitro culture of root and rootless seedling confirmed the strong gossypol biosynthesis ability in root system and the relatively weak gossypol biosynthesis ability in other organs of the seedling. Expression profiling of the key genes involved in the gossypol biosynthetic pathway also supported the root as the major organ of gossypol biosynthesis. CONCLUSIONS: Our study provide evidence that the cotton root system is the major source of gossypol in both glanded and glandless cottons, while other organs have a relatively weak ability to synthesize gossypol. Gossypol biosynthesis is not directed related to the expression of pigment glands, but the presence of pigment glands is essential for gossypol accumulation. These findings can not only clarify the complex regulation network of gossypol metabolism, but it could also accelerate the crop breeding process with enhanced commercial values.


Assuntos
Gossypium/metabolismo , Gossipol/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Gossipol/biossíntese , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA