Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nature ; 614(7946): 81-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725999

RESUMO

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance1,2. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density3-6. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down7-14, but minimization of the lateral dimensions of stacked µLEDs has been difficult. Here we report full-colour, vertically stacked µLEDs that achieve, to our knowledge, the highest array density (5,100 pixels per inch) and the smallest size (4 µm) reported to date. This is enabled by a two-dimensional materials-based layer transfer technique15-18 that allows the growth of RGB LEDs of near-submicron thickness on two-dimensional material-coated substrates via remote or van der Waals epitaxy, mechanical release and stacking of LEDs, followed by top-down fabrication. The smallest-ever stack height of around 9 µm is the key enabler for record high µLED array density. We also demonstrate vertical integration of blue µLEDs with silicon membrane transistors for active matrix operation. These results establish routes to creating full-colour µLED displays for augmented and virtual reality, while also offering a generalizable platform for broader classes of three-dimensional integrated devices.

2.
Small ; 19(39): e2302597, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246255

RESUMO

Ultrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process. Therefore, as an alternative to SOI wafers-based thin layers, here, a simple transfer method is proposed for printing ultrathin multiple crystalline silicon sheets with thicknesses between 300 nm to 13 µm and high areal density (>90%) from a single mother wafer. Theoretically, the silicon nano/micro membrane can be generated until the mother wafer is completely consumed. In addition, the electronic applications of silicon membranes are successfully demonstrated through the fabrication of a flexible solar cell and flexible NMOS transistor arrays.

3.
Proc Natl Acad Sci U S A ; 116(31): 15398-15406, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308234

RESUMO

Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm2 In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices.

4.
Proc Natl Acad Sci U S A ; 115(41): E9542-E9549, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228119

RESUMO

Materials and structures that enable long-term, intimate coupling of flexible electronic devices to biological systems are critically important to the development of advanced biomedical implants for biological research and for clinical medicine. By comparison with simple interfaces based on arrays of passive electrodes, the active electronics in such systems provide powerful and sometimes essential levels of functionality; they also demand long-lived, perfect biofluid barriers to prevent corrosive degradation of the active materials and electrical damage to the adjacent tissues. Recent reports describe strategies that enable relevant capabilities in flexible electronic systems, but only for capacitively coupled interfaces. Here, we introduce schemes that exploit patterns of highly doped silicon nanomembranes chemically bonded to thin, thermally grown layers of SiO2 as leakage-free, chronically stable, conductively coupled interfaces. The results can naturally support high-performance, flexible silicon electronic systems capable of amplified sensing and active matrix multiplexing in biopotential recording and in stimulation via Faradaic charge injection. Systematic in vitro studies highlight key considerations in the materials science and the electrical designs for high-fidelity, chronic operation. The results provide a versatile route to biointegrated forms of flexible electronics that can incorporate the most advanced silicon device technologies with broad applications in electrical interfaces to the brain and to other organ systems.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Neurológicos , Silício , Eletrodos
5.
Opt Express ; 28(24): 36559-36567, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379747

RESUMO

We demonstrate flexible GaAs photodetector arrays that were hetero-epitaxially grown on a Si wafer for a new cost-effective and reliable wearable optoelectronics platform. A high crystalline quality GaAs layer was transferred onto a flexible foreign substrate and excellent retention of device performance was demonstrated by measuring the optical responsivities and dark currents. Optical simulation proves that the metal stacks used for wafer bonding serve as a back-reflector and enhance GaAs photodetector responsivity via a resonant-cavity effect. Device durability was also tested by bending 1000 times and no performance degradation was observed. This work paves a way for a cost-effective and flexible III-V optoelectronics technology with high durability.

6.
Proc Natl Acad Sci U S A ; 114(45): E9455-E9464, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078394

RESUMO

Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.


Assuntos
Nanoestruturas/química , Alicerces Teciduais/química , Animais , Gânglios Espinais/citologia , Masculino , Rede Nervosa/citologia , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Temperatura , Engenharia Tecidual/métodos
7.
Proc Natl Acad Sci U S A ; 113(42): 11682-11687, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27791052

RESUMO

Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 µm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.


Assuntos
Líquidos Corporais , Eletrônica Médica , Dióxido de Silício , Simulação por Computador , Eletricidade , Modelos Teóricos , Dióxido de Silício/química , Temperatura
8.
Proc Natl Acad Sci U S A ; 113(22): 6131-6, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185907

RESUMO

Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.


Assuntos
Materiais Biocompatíveis/química , Fontes de Energia Elétrica , Lítio/química , Pele/química , Termografia/instrumentação , Tecnologia sem Fio/instrumentação , Eletricidade , Eletrônica , Voluntários Saudáveis , Humanos , Pele/efeitos da radiação
9.
Nat Mater ; 15(7): 782-791, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088236

RESUMO

Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.


Assuntos
Implantes Absorvíveis , Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Eletrodos Implantados , Silício , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Ratos , Silício/química , Silício/farmacologia
10.
Nano Lett ; 15(2): 969-73, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584701

RESUMO

Here we demonstrate materials and operating conditions that allow for high-resolution printing of layers of quantum dots (QDs) with precise control over thickness and submicron lateral resolution and capabilities for use as active layers of QD light-emitting diodes (LEDs). The shapes and thicknesses of the QD patterns exhibit systematic dependence on the dimensions of the printing nozzle and the ink composition in ways that allow nearly arbitrary, systematic control when exploited in a fully automated printing tool. Homogeneous arrays of patterns of QDs serve as the basis for corresponding arrays of QD LEDs that exhibit excellent performance. Sequential printing of different types of QDs in a multilayer stack or in an interdigitated geometry provides strategies for continuous tuning of the effective, overall emission wavelengths of the resulting QD LEDs. This strategy is useful to efficient, additive use of QDs for wide ranging types of electronic and optoelectronic devices.

11.
Nat Mater ; 12(10): 938-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24037122

RESUMO

Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.


Assuntos
Temperatura Cutânea , Termometria/instrumentação , Adulto , Epiderme/fisiologia , Humanos , Masculino , Processos Mentais/fisiologia , Estimulação Física , Descanso , Fatores de Tempo
12.
STAR Protoc ; 5(1): 102909, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427565

RESUMO

Here, we present a protocol for the fabrication of transparent implantable electrode arrays for integrating optogenetics and electrophysiology. We describe steps for fabricating microelectrodes using the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). We then detail procedures for analyzing performance of the electrodes and recording light-evoked neural activities from the transgenic mouse. This protocol utilizes photolithography rather than conventional electrodeposition. For complete details on the use and execution of this protocol, please refer to Cho et al. (2022).1.


Assuntos
Optogenética , Roedores , Camundongos , Animais , Microeletrodos , Eletrodos Implantados , Camundongos Transgênicos , Eletrofisiologia/métodos
13.
Nanoscale ; 16(11): 5613-5623, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412042

RESUMO

Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.

14.
Nat Commun ; 15(1): 2000, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448437

RESUMO

Bioresorbable neural implants based on emerging classes of biodegradable materials offer a promising solution to the challenges of secondary surgeries for removal of implanted devices required for existing neural implants. In this study, we introduce a fully bioresorbable flexible hybrid opto-electronic system for simultaneous electrophysiological recording and optogenetic stimulation. The flexible and soft device, composed of biodegradable materials, has a direct optical and electrical interface with the curved cerebral cortex surface while exhibiting excellent biocompatibility. Optimized to minimize light transmission losses and photoelectric artifact interference, the device was chronically implanted in the brain of transgenic mice and performed to photo-stimulate the somatosensory area while recording local field potentials. Thus, the presented hybrid neural implant system, comprising biodegradable materials, promises to provide monitoring and therapy modalities for versatile applications in biomedicine.


Assuntos
Implantes Absorvíveis , Depressores do Sistema Nervoso Central , Animais , Camundongos , Optogenética , Artefatos , Encéfalo , Eletrônica , Camundongos Transgênicos
15.
Biosens Bioelectron ; 260: 116446, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820722

RESUMO

Understanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects. However, the integration of neural implants with MRI technology presents challenges because of its strong electromagnetic (EM) energy during MRI scans. Therefore, MRI-compatible neural implants should facilitate detailed investigation of neural activities and brain functions in real-time in high resolution, without compromising patient safety and imaging quality. Here, we introduce the fully MRI-compatible monolayer open-mesh pristine PEDOT:PSS neural interface. This approach addresses the challenges encountered while using traditional metal-based electrodes in the MRI environment such as induced heat or imaging artifacts. PEDOT:PSS has a diamagnetic property with low electrical conductivity and negative magnetic susceptibility similar to human tissues. Furthermore, by adopting the optimized open-mesh structure, the induced currents generated by EM energy are significantly diminished, leading to optimized MRI compatibility. Through simulations and experiments, our PEDOT:PSS-based open-mesh electrodes showed improved performance in reducing heat generation and eliminating imaging artifacts in an MRI environment. The electrophysiological recording capability was also validated by measuring the local field potential (LFP) from the somatosensory cortex with an in vivo experiment. The development of neural implants with maximized MRI compatibility indicates the possibility of potential tools for future neural diagnostics.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Polímeros , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Animais , Polímeros/química , Técnicas Biossensoriais/métodos , Poliestirenos/química , Eletrodos Implantados , Compostos Bicíclicos Heterocíclicos com Pontes/química , Tiofenos/química , Desenho de Equipamento , Condutividade Elétrica
16.
Nat Commun ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169465

RESUMO

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Assuntos
Pele Artificial , Humanos , Biônica , Tato/fisiologia , Pele , Cicatrização , Órgãos dos Sentidos
17.
STAR Protoc ; 4(1): 101925, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528855

RESUMO

Wearable temperature sensors with high thermal sensitivity are required for precise and continuous body temperature monitoring. Here, we present a protocol for fabricating a thin, stretchable, and ultrahigh thermal-sensitive wearable sensor based on gold-doped crystalline-silicon nanomembrane (SiNM). We provide detailed steps of gold doping technique to SiNM and fabrication processes for gold-doped crystalline-SiNM based wearable temperature sensor. For complete details on the use and execution of this protocol, please refer to Sang et al. (2022).1.


Assuntos
Dispositivos Eletrônicos Vestíveis , Temperatura , Silício , Ouro
18.
Sci Adv ; 9(22): eadh1765, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256939

RESUMO

Continuous glucose monitoring (CGM) allows patients with diabetes to manage critical disease effectively and autonomously and prevent exacerbation. A painless, wireless, compact, and minimally invasive device that can provide CGM is essential for monitoring the health conditions of freely moving patients with diabetes. Here, we propose a glucose-responsive fluorescence-based highly sensitive biodegradable microneedle CGM system. These ultrathin and ultralight microneedle sensor arrays continuously and precisely monitored glucose concentration in the interstitial fluid with minimally invasive, pain-free, wound-free, and skin inflammation-free outcomes at various locations and thicknesses of the skin. Bioresorbability in the body without a need for device removal after use was a key characteristic of the microneedle glucose sensor. We demonstrated the potential long-term use of the bioresorbable device by applying the tether-free CGM system, thus confirming the successful detection of glucose levels based on changes in fluorescence intensity. In addition, this microneedle glucose sensor with a user-friendly designed home diagnosis system using mobile applications and portable accessories offers an advance in CGM and its applicability to other bioresorbable, wearable, and implantable monitoring device technology.


Assuntos
Diabetes Mellitus , Aplicativos Móveis , Humanos , Glicemia , Automonitorização da Glicemia , Smartphone , Glucose
19.
Sci Adv ; 9(39): eadi8918, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756405

RESUMO

Numerous wireless optogenetic systems have been reported for practical tether-free optogenetics in freely moving animals. However, most devices rely on battery-powered or coil-powered systems requiring periodic battery replacement or bulky, high-cost charging equipment with delicate antenna design. This leads to spatiotemporal constraints, such as limited experimental duration due to battery life or animals' restricted movement within specific areas to maintain wireless power transmission. In this study, we present a wireless, solar-powered, flexible optoelectronic device for neuromodulation of the complete freely behaving subject. This device provides chronic operation without battery replacement or other external settings including impedance matching technique and radio frequency generators. Our device uses high-efficiency, thin InGaP/GaAs tandem flexible photovoltaics to harvest energy from various light sources, which powers Bluetooth system to facilitate long-term, on-demand use. Observation of sustained locomotion behaviors for a month in mice via secondary motor cortex area stimulation demonstrates the notable capabilities of our device, highlighting its potential for space-free neuromodulating applications.


Assuntos
Optogenética , Tecnologia sem Fio , Camundongos , Animais , Optogenética/métodos , Movimento , Fontes de Energia Elétrica
20.
Nano Lett ; 11(11): 4831-8, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21967406

RESUMO

We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Nanoestruturas/química , Silício , Campos Eletromagnéticos , Luz , Teste de Materiais , Nanoestruturas/efeitos da radiação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA