Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.634
Filtrar
1.
Nat Immunol ; 24(2): 280-294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543960

RESUMO

T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFß1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFß1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFß1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo
2.
Nature ; 613(7942): 111-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544025

RESUMO

When faced with predatory threats, escape towards shelter is an adaptive action that offers long-term protection against the attacker. Animals rely on knowledge of safe locations in the environment to instinctively execute rapid shelter-directed escape actions1,2. Although previous work has identified neural mechanisms of escape initiation3,4, it is not known how the escape circuit incorporates spatial information to execute rapid flights along the most efficient route to shelter. Here we show that the mouse retrosplenial cortex (RSP) and superior colliculus (SC) form a circuit that encodes the shelter-direction vector and is specifically required for accurately orienting to shelter during escape. Shelter direction is encoded in RSP and SC neurons in egocentric coordinates and SC shelter-direction tuning depends on RSP activity. Inactivation of the RSP-SC pathway disrupts the orientation to shelter and causes escapes away from the optimal shelter-directed route, but does not lead to generic deficits in orientation or spatial navigation. We find that the RSP and SC are monosynaptically connected and form a feedforward lateral inhibition microcircuit that strongly drives the inhibitory collicular network because of higher RSP input convergence and synaptic integration efficiency in inhibitory SC neurons. This results in broad shelter-direction tuning in inhibitory SC neurons and sharply tuned excitatory SC neurons. These findings are recapitulated by a biologically constrained spiking network model in which RSP input to the local SC recurrent ring architecture generates a circular shelter-direction map. We propose that this RSP-SC circuit might be specialized for generating collicular representations of memorized spatial goals that are readily accessible to the motor system during escape, or more broadly, during navigation when the goal must be reached as fast as possible.


Assuntos
Reação de Fuga , Giro do Cíngulo , Vias Neurais , Neurônios , Navegação Espacial , Colículos Superiores , Animais , Camundongos , Reação de Fuga/fisiologia , Neurônios/fisiologia , Comportamento Predatório , Memória Espacial , Navegação Espacial/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Fatores de Tempo , Objetivos
3.
N Engl J Med ; 388(19): 1767-1778, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37163623

RESUMO

BACKGROUND: The efficacy and safety of treatment with cabozantinib in combination with nivolumab and ipilimumab in patients with previously untreated advanced renal-cell carcinoma are unknown. METHODS: In this phase 3, double-blind trial, we enrolled patients with advanced clear-cell renal-cell carcinoma who had not previously received treatment and had intermediate or poor prognostic risk according to the International Metastatic Renal-Cell Carcinoma Database Consortium categories. Patients were randomly assigned to receive 40 mg of cabozantinib daily in addition to nivolumab and ipilimumab (experimental group) or matched placebo in addition to nivolumab and ipilimumab (control group). Nivolumab (3 mg per kilogram of body weight) and ipilimumab (1 mg per kilogram) were administered once every 3 weeks for four cycles. Patients then received nivolumab maintenance therapy (480 mg once every 4 weeks) for up to 2 years. The primary end point was progression-free survival, as determined by blinded independent review according to Response Evaluation Criteria in Solid Tumors, version 1.1, and was assessed in the first 550 patients who had undergone randomization. The secondary end point was overall survival, assessed in all patients who had undergone randomization. RESULTS: Overall, 855 patients underwent randomization: 428 were assigned to the experimental group and 427 to the control group. Among the first 550 patients who had undergone randomization (276 in the experimental group and 274 in the control group), the probability of progression-free survival at 12 months was 0.57 in the experimental group and 0.49 in the control group (hazard ratio for disease progression or death, 0.73; 95% confidence interval, 0.57 to 0.94; P = 0.01); 43% of the patients in the experimental group and 36% in the control group had a response. Grade 3 or 4 adverse events occurred in 79% of the patients in the experimental group and in 56% in the control group. Follow-up for overall survival is ongoing. CONCLUSIONS: Among patients with previously untreated, advanced renal-cell carcinoma who had intermediate or poor prognostic risk, treatment with cabozantinib plus nivolumab and ipilimumab resulted in significantly longer progression-free survival than treatment with nivolumab and ipilimumab alone. Grade 3 or 4 adverse events were more common in the experimental group than in the control group. (Funded by Exelixis; COSMIC-313 ClinicalTrials.gov number, NCT03937219.).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Ipilimumab/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêutico , Prognóstico , Método Duplo-Cego , Análise de Sobrevida
4.
PLoS Pathog ; 20(6): e1012260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885242

RESUMO

Adeno-associated virus (AAV) serotypes from primates are being developed and clinically used as vectors for human gene therapy. However, the evolutionary mechanism of AAV variants is far from being understood, except that genetic recombination plays an important role. Furthermore, little is known about the interaction between AAV and its natural hosts, human and nonhuman primates. In this study, natural AAV capsid genes were subjected to systemic evolutionary analysis with a focus on selection drives during the diversification of AAV lineages. A number of positively selected sites were identified from these AAV lineages with functional relevance implied by their localization on the AAV structures. The selection drives of the two AAV2 capsid sites were further investigated in a series of biological experiments. These observations did not support the evolution of the site 410 of the AAV2 capsid driven by selection pressure from the human CD4+ T-cell response. However, positive selection on site 548 of the AAV2 capsid was directly related to host humoral immunity because of the profound effects of mutations at this site on the immune evasion of AAV variants from human neutralizing antibodies at both the individual and population levels. Overall, this work provides a novel interpretation of the genetic diversity and evolution of AAV lineages in their natural hosts, which may contribute to their further engineering and application in human gene therapy.


Assuntos
Proteínas do Capsídeo , Dependovirus , Evolução Molecular , Seleção Genética , Dependovirus/genética , Dependovirus/imunologia , Humanos , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Variação Genética , Terapia Genética
5.
J Immunol ; 213(2): 204-213, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38856712

RESUMO

Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.


Assuntos
Quirópteros , Interferon Tipo I , Quirópteros/imunologia , Quirópteros/genética , Quirópteros/virologia , Animais , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Humanos , Antivirais , Imunidade Inata/genética , Filogenia
6.
EMBO J ; 40(21): e107839, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34528284

RESUMO

Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.


Assuntos
Adaptação Fisiológica/genética , Alelos , Receptor Quinase 1 Acoplada a Proteína G/genética , Aptidão Genética , N-Glicosil Hidrolases/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Células HEK293 , Haploidia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Células Mieloides/metabolismo , Células Mieloides/patologia , N-Glicosil Hidrolases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transdução de Sinais , Transcriptoma , Proteína Vermelha Fluorescente
7.
EMBO Rep ; 24(1): e54935, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314725

RESUMO

The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Centrossomo/metabolismo , Citoesqueleto de Actina/metabolismo
8.
Exp Cell Res ; 440(1): 114130, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885805

RESUMO

Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.


Assuntos
Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Quinase 1 Polo-Like , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Animais , Humanos , Masculino , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
9.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991271

RESUMO

Neuroimaging markers for risk and protective factors related to type 2 diabetes mellitus are critical for clinical prevention and intervention. In this work, the individual metabolic brain networks were constructed with Jensen-Shannon divergence for 4 groups (elderly type 2 diabetes mellitus and healthy controls, and middle-aged type 2 diabetes mellitus and healthy controls). Regional network properties were used to identify hub regions. Rich-club, feeder, and local connections were subsequently obtained, intergroup differences in connections and correlations between them and age (or fasting plasma glucose) were analyzed. Multinomial logistic regression was performed to explore effects of network changes on the probability of type 2 diabetes mellitus. The elderly had increased rich-club and feeder connections, and decreased local connection than the middle-aged among type 2 diabetes mellitus; type 2 diabetes mellitus had decreased rich-club and feeder connections than healthy controls. Protective factors including glucose metabolism in triangle part of inferior frontal gyrus, metabolic connectivity between triangle of the inferior frontal gyrus and anterior cingulate cortex, degree centrality of putamen, and risk factors including metabolic connectivities between triangle of the inferior frontal gyrus and Heschl's gyri were identified for the probability of type 2 diabetes mellitus. Metabolic interactions among critical brain regions increased in type 2 diabetes mellitus with aging. Individual metabolic network changes co-affected by type 2 diabetes mellitus and aging were identified as protective and risk factors for the likelihood of type 2 diabetes mellitus, providing guiding evidence for clinical interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Pessoa de Meia-Idade , Idoso , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Fatores de Risco , Envelhecimento , Redes e Vias Metabólicas
10.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037387

RESUMO

Previous studies have suggested that ischemic stroke can result in white matter fiber injury and modifications in the structural brain network. However, the relationship with balance function scores remains insufficiently explored. Therefore, this study aims to explore the alterations in the microstructural properties of brain white matter and the topological characteristics of the structural brain network in postischemic stroke patients and their potential correlations with balance function. We enrolled 21 postischemic stroke patients and 21 age, sex, and education-matched healthy controls (HC). All participants underwent balance function assessment and brain diffusion tensor imaging. Tract-based spatial statistics (TBSS) were used to compare the fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity of white matter fibers between the two groups. The white matter structural brain network was constructed based on the automated anatomical labeling atlas, and we conducted a graph theory-based analysis of its topological properties, including global network properties and local node properties. Additionally, the correlation between the significant structural differences and balance function score was analyzed. The TBSS results showed that in comparison to the HC, postischemic stroke patients exhibited extensive damage to their whole-brain white matter fiber tracts (P < 0.05). Graph theory analysis showed that in comparison to the HC, postischemic stroke patients exhibited statistically significant reductions in the values of global efficiency, local efficiency, and clustering coefficient, as well as an increase in characteristic path length (P < 0.05). In addition, the degree centrality and nodal efficiency of some nodes in postischemic stroke patients were significantly reduced (P < 0.05). The white matter fibers of the entire brain in postischemic stroke patients are extensively damaged, and the topological properties of the structural brain network are altered, which are closely related to balance function. This study is helpful in further understanding the neural mechanism of balance function after ischemic stroke from the white matter fiber and structural brain network topological properties.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem
11.
Proc Natl Acad Sci U S A ; 119(43): e2207280119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252040

RESUMO

The current view of nucleic acid-mediated innate immunity is that binding of intracellular sensors to nucleic acids is sufficient for their activation. Here, we report that endocytosis of virus or foreign DNA initiates a priming signal for the DNA sensor cyclic GMP-AMP synthase (cGAS)-mediated innate immune response. Mechanistically, viral infection or foreign DNA transfection triggers recruitment of the spleen tyrosine kinase (SYK) and cGAS to the endosomal vacuolar H+ pump (V-ATPase), where SYK is activated and then phosphorylates human cGASY214/215 (mouse cGasY200/201) to prime its activation. Upon binding to DNA, the primed cGAS initiates robust cGAMP production and mediator of IRF3 activation/stimulator of interferon genes-dependent innate immune response. Consistently, blocking the V-ATPase-SYK axis impairs DNA virus- and transfected DNA-induced cGAMP production and expression of antiviral genes. Our findings reveal that V-ATPase-SYK-mediated tyrosine phosphorylation of cGAS following endocytosis of virus or other cargos serves as a priming signal for cGAS activation and innate immune response.


Assuntos
Endocitose , Imunidade Inata , Nucleotidiltransferases , Quinase Syk , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , DNA , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Quinase Syk/metabolismo , Tirosina , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Am J Respir Cell Mol Biol ; 71(1): 66-80, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574235

RESUMO

The role of endothelial cells in acute lung injury (ALI) has been widely elaborated, but little is known about the role of different subtypes of endothelial cells in ALI. ALI models were established by lipopolysaccharide. Single-cell RNA sequencing was used to identify differential molecules in endothelial subtypes and the heterogeneity of lung immune cells. Specific antibodies were used to block insulin-like growth factor binding protein 7 (IGFBP7), and AAVshIGP7 was used to specifically knock down IGFBP7. Here, we found that IGFBP7 was the most differentially expressed molecule in diverse subsets of endothelial cells and that IGFBP7 was strongly associated with inflammatory responses. Elevated IGFBP7 significantly exacerbated barrier dysfunction in ALI, whereas blockade of IGFBP7 partially reversed barrier damage. General capillary cells are the primary source of elevated serum IGFBP7 after ALI. Using single-cell RNA sequencing, we identified significantly increased Clec4nhi neutrophils in mice with ALI, whereas IGFBP7 knockdown significantly reduced infiltration of Clec4nhi cells and mitigated barrier dysfunction in ALI. In addition, we found that IGFBP7 activated the NF-κB signaling axis by promoting phosphorylation and ubiquitination degradation of F-box/WD repeat-containing protein 2 (FBXW2), thereby exacerbating barrier dysfunction in ALI. Taken together, our data indicate that blockade of serum IGFBP7 or IGFBP7 depletion in general capillary cells reversed barrier damage in ALI. Therefore, targeting IGFBP7 depletion could be a novel strategy for treating ALI.


Assuntos
Lesão Pulmonar Aguda , Células Endoteliais , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Neutrófilos , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neutrófilos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Transdução de Sinais , Masculino , NF-kappa B/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Lipopolissacarídeos/farmacologia
13.
BMC Genomics ; 25(1): 191, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373891

RESUMO

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS: Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION: This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.


Assuntos
Asteraceae , Helianthus , Ralstonia solanacearum , Humanos , Ralstonia/genética , Genômica , Ralstonia solanacearum/genética , Filogenia , Doenças das Plantas/microbiologia
14.
J Cell Biochem ; 125(5): e30563, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591551

RESUMO

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Assuntos
Células Endoteliais , Glucose , Heme Oxigenase-1 , Miócitos de Músculo Liso , Espécies Reativas de Oxigênio , Estresse Mecânico , Humanos , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativação Enzimática , Glucose/metabolismo , Glucose/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Molécula 1 de Adesão Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
15.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982611

RESUMO

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

16.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446062

RESUMO

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Pirazóis , Quinolinas , Humanos , SARS-CoV-2/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Antivirais/química
17.
Biochem Biophys Res Commun ; 702: 149652, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341922

RESUMO

Prostatic acid phosphatase (PAP) is a glycoprotein that plays a crucial role in the hydrolysis of phosphate ester present in prostatic exudates. It is a well-established indicator for prostate cancer due to its elevated serum levels in disease progression. Despite its abundance in semen, PAP's influence on male fertility has not been extensively studied. In our study, we report a significantly optimized method for purifying human endogenous PAP, achieving remarkably high efficiency and active protein recovery rate. This achievement allowed us to better analyze and understand the PAP protein. We determined the cryo-electron microscopic (Cryo-EM) structure of prostatic acid phosphatase in its physiological state for the first time. Our structural and gel filtration analysis confirmed the formation of a tight homodimer structure of human PAP. This functional homodimer displayed an elongated conformation in the cryo-EM structure compared to the previously reported crystal structure. Additionally, there was a notable 5-degree rotation in the angle between the α domain and α/ß domain of each monomer. Through structural analysis, we revealed three potential glycosylation sites: Asn94, Asn220, and Asn333. These sites contained varying numbers and forms of glycosyl units, suggesting sugar moieties influence PAP function. Furthermore, we found that the active sites of PAP, His44 and Asp290, are located between the two protein domains. Overall, our study not only provide an optimized approach for PAP purification, but also offer crucial insights into its structural characteristics. These findings lay the groundwork for further investigations into the physiological function and potential therapeutic applications of this important protein.


Assuntos
Neoplasias da Próstata , Sêmen , Humanos , Masculino , Sêmen/química , Sêmen/metabolismo , Microscopia Crioeletrônica , Próstata/metabolismo , Fosfatase Ácida/metabolismo
18.
BMC Plant Biol ; 24(1): 70, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263006

RESUMO

BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.


Assuntos
Apiaceae , Sanicula , Filogenia , Plastídeos , Cloroplastos
19.
Mol Genet Genomics ; 299(1): 62, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869622

RESUMO

Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter, plays a crucial role in regulating bile acid levels and influencing the risk of HBV infection. Genetic variations in the SLC10A1 gene, which encodes NTCP, affect these functions. However, the impact of SLC10A1 gene variants on the metabolic and biochemical traits remained unclear. We aimed to investigate the association of SLC10A1 gene variants with the clinical and biochemical parameters, and the risk of different HBV infection statuses and gallstone disease in the Taiwanese population. Genotyping data from 117,679 Taiwan Biobank participants were analyzed using the Axiom genome-wide CHB arrays. Regional-plot association analysis demonstrated genome-wide significant association between the SLC10A1 rs2296651 genotypes and lipid profile, gamma glutamyl transferase (γGT) level and anti-HBc-positivity. Genotype-phenotype association analyses revealed significantly lower total cholesterol, low-density lipoprotein (LDL) cholesterol and uric acid levels, a higher γGT level and a higher gallstone incidence in rare rs2296651-A allele carrier. Participants with the rs2296651 AA-genotype exhibited significantly lower rates of anti-HBc-positivity and HBsAg-positivity. Compared to those with the GG-genotype, individuals with non-GG-genotypes had reduced risks for various HBV infection statuses: the AA-genotype showed substantially lower risks, while the GA-genotype demonstrated modestly lower risks. Predictive tools also suggested that the rs2296651 variant potentially induced protein damage and pathogenic effects. In conclusion, our data revealed pleiotropic effects of the SLC10A1 rs2296651 genotypes on the levels of biochemical traits and the risk of HBV infection and gallstone disease. This confirms SLC10A1's versatility and implicates its genotypes in predicting both biochemical traits and disease susceptibility.


Assuntos
Cálculos Biliares , Predisposição Genética para Doença , Vírus da Hepatite B , Hepatite B , Transportadores de Ânions Orgânicos Dependentes de Sódio , Polimorfismo de Nucleotídeo Único , Simportadores , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Cálculos Biliares/genética , Feminino , Simportadores/genética , Masculino , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Pessoa de Meia-Idade , Taiwan/epidemiologia , Adulto , Genótipo , Estudo de Associação Genômica Ampla , Estudos de Associação Genética , Fatores de Risco
20.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193234

RESUMO

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Assuntos
Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA