Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311971, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727202

RESUMO

Improving the catalytic activity and durability of platinum-based alloy catalysts remains a formidable challenge in the context of renewable energy electrolysis applications. Herein, a facile and rapid photochemical deposition strategy for the synthesis of gold single atoms (Au SAs) anchored on N-doped carbon is presented. These Au SAs serve as a charge redistribution support for Pt-Ni alloy nanoparticles (PtNiNPs/AuSA-NDC), creating an extended electron-donating interface with Pt-Ni alloy sites. Consequently, the PtNiNPs/AuSA-NDC hybrid catalyst manifests exceptional catalytic performance and durability in both the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) under acidic conditions. Specifically, in ORR, it exhibits a half-wave potential (0.92 V vs RHE), with a mass activity 20.4 times superior to Pt/C at 0.9 V. In HER, PtNiNPs/AuSA-NDC demonstrates a notably reduced overpotential of 19.1 mV vs RHE at 10 mA cm-2 and a mass activity 38 times higher than Pt/C (at 0.25 mV). Furthermore, this hybrid catalyst displays outstanding durability, with only an 8.0 mV decay observed for ORR and a 6.9 mV decay for HER after 10 000 cycles. Theoretical calculations provide insight into the mechanism, demonstrating that isolated Au sites effectively modulate the electronic structure of Pt-Ni alloy sites, facilitating intermediate adsorption and enhancing reaction kinetics.

2.
Nanotechnology ; 32(50)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34490848

RESUMO

We report the successful demonstration of a light-assisted NO2gas sensor that operates at room temperature with high response. The gas sensor was fabricated with high-crystalline undoped-GaN nanowires (NWs) and graphene functioning as the light-absorbing medium and carrier channel, respectively. Exposure of the gas sensor to the NO2concentration of 100 ppm at a light intensity of 1 mW cm-2of a xenon lamp delivered a response of 16% at room temperature, which increased to 23% when the light intensity increased to 100 mW cm-2. This value is higher than those previously reported for GaN-based NO2gas sensors operating at room temperature. The room-temperature response of the gas sensor measured after six months was calculated to be 21.9%, which corresponds to 95% compared to the value obtained immediately after fabricating the devices. The response of the gas sensor after independently injecting NO2, H2S, H2, CO, and CH3CHO gases were measured to be 23, 5, 2.6, 2.2, and 1.7%, respectively. These results indicate that the gas sensor using GaN NWs and graphene provides high response, long-term stability, and good selectivity to NO2gas at room temperature. In addition, the use of undoped-GaN NWs without using additional catalysts makes it possible to fabricate gas sensors that operate at room temperature simpler and better than conventional technologies.

3.
Opt Lett ; 43(10): 2352-2355, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762590

RESUMO

We propose stretchable plasmonic templates of Au and Au/SiO2 nanoparticles (NPs) to improve the luminescence of CsPbBr3 perovskite nanocrystals (PNCs). These templates are highly flexible and consist of polymer-metal NP composites that facilitate the luminescence enhancement by localized surface plasmons (LSPs) due to coupling with metal NP. This template also prevents the degradation of carrier transport properties for perovskite light-emitting diodes by embedding metal NPs in polymer. The luminescence of PNC film on the template with Au NPs decreases by 21% compared to PNC films on the reference (polymer film without metal NPs), while it increases by 54% for the templates with Au/SiO2 NPs. The observed effects are explained by the luminescence enhancement due to coupling to LSPs formed by the Au/SiO2 NPs and by the prevalence of electron tunneling and dumping for Au NPs.

4.
Soft Matter ; 13(34): 5759-5766, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28761944

RESUMO

Herein, we have synthesized novel photopolymerizable dumbbell-shaped diacetylene liquid crystal (LC) monomers by locating a diacetylene dicarboxylic acid group at the center and chemically connecting swallow-tails, such as hydrophobic alkyl chains (abbreviated as AT3DI) and amphiphilic biphenyl mesogens (abbreviated as BP3DI), with bisamide groups. Major phase transitions of dumbbell-shaped diacetylene monomers were identified using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and Fourier transform infrared spectroscopy (FT IR). Molecular packing structures were studied based on structure-sensitive wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) analyses. Mainly, due to nanophase separations and strong intermolecular hydrogen bonding, AT3DI formed a low-ordered lamellar LC phase at room temperature. BP3DI self-assembled into highly-ordered crystal phases (K1 and K2) at lower temperatures below a low-ordered lamellar LC phase, in which BP3DI were intercalated with each other to compensate the mutual volume differences. From the photopolymerization of AT3DI and BP3DI, it was realized that the topochemical reactions of dumbbell-shaped diacetylene monomers were closely related to their chemical structures as well as molecular packing structures.

5.
ACS Appl Mater Interfaces ; 16(6): 8016-8023, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294420

RESUMO

The photoelectrochemical water splitting (PEC-WS) performance of a photoanode consisting of GaN nanowires (NWs) is significantly improved using a Ti3C2-MXene coating as an intermediate layer to promote carrier transfer toward the electrolyte. The maximum current density and applied-bias photon-to-current efficiency of the photoanode comprising GaN NWs coated with Ti3C2-MXene (MGNWs) are measured to be 34.24 mA/cm2 and 14.47% at 1.2 and 0.4 V versus a reversible hydrogen electrode (RHE), respectively. These values are much higher than those of the GaN-NW photoanode without Ti3C2-MXene (4.04 mA/cm2 and 1.95%) and also markedly exceed those of previously reported photoanodes. After 8 days of PEC-WS, the current density was measured to be 31.07 mA/cm2, which corresponds to 97.58% of that measured immediately after the reaction started. Based on the time dependence of the current density, the hydrogen evolution rate over the reaction time is calculated to be 0.58 mmol/cm2·h. The results confirm that the PEC-WS performance of the optimized MGNW photoanode is superior to and more stable than those of previously reported photoanodes.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678111

RESUMO

We report the improvement in photoelectrochemical water splitting (PEC-WS) by controlling migration kinetics of photo-generated carriers using InGaN/GaN hetero-structure nanowires (HSNWs) as a photocathode (PC) material. The InGaN/GaN HSNWs were formed by first growing GaN nanowires (NWs) on an Si substrate and then forming InGaN NWs thereon. The InGaN/GaN HSNWs can cause the accumulation of photo-generated carriers in InGaN due to the potential barrier formed at the hetero-interface between InGaN and GaN, to increase directional migration towards electrolyte rather than the Si substrate, and consequently to contribute more to the PEC-WS reaction with electrolyte. The PEC-WS using the InGaN/GaN-HSNW PC shows the current density of 12.6 mA/cm2 at -1 V versus reversible hydrogen electrode (RHE) and applied-bias photon-to-current conversion efficiency of 3.3% at -0.9 V versus RHE. The high-performance PEC-WS using the InGaN/GaN HSNWs can be explained by the increase in the reaction probability of carriers at the interface between InGaN NWs and electrolyte, which was analyzed by electrical resistance and capacitance values defined therein.

7.
J Colloid Interface Sci ; 634: 930-939, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566637

RESUMO

Pt-Ni (111) alloy nanoparticles (NPs) and atomically dispersed Pt have been shown to be the most effective catalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) as well as less expensive compared to pure Pt NPs. To meet reaction kinetic demands and minimize the Pt utilization at cathode in PEMFCs, we propose a novel electrocatalyst composed of dual single-atoms (Pt, Ni) and Pt-Ni alloy NPs dispersed on the surface of N-doped carbon (NDC); collectively, PtNiSA-NPS-NDC. The optimized PtNiSA-NPS-NDC catalyst displays excellent mass activity and durability compared to commercial Pt/C. Electrocatalytic measurements show that the PtNiSA-NPS-NDC catalyst, with a metal loading of 4.5 wt%, exhibited distinguished ORR performance (E1/2 = 0.912 V) through a 4-electron (4e-) pathway, which is higher than that of commercial 20 wt% Pt/C (E1/2 = 0.857 V). The DFT simulations indicate Pt-Ni alloy NPs and PtNiN2C4 atomic structure are the mobile active sites for ORR catalytic activity in PtNiSA-NPS-NDC. As a cathode catalyst in PEMFC, the Pt utilization efficiency in the PtNiSA-NPS-NDC catalyst is 0.033 gPt kW-1, which is 5.6 times higher than that of commercial Pt/C (0.185gPt kW-1). Therefore, the consumption of precious metals is effectively minimized.

8.
J Nanosci Nanotechnol ; 12(2): 1380-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629961

RESUMO

In the present work, ZnO nanostructures were synthesized by monoethanolamine (MEA)-assisted ultrasonic method at low temperature. Structural analysis was carried out by X-ray diffraction (XRD) confirmed the formation of hexagonal wurtzite structure of ZnO. The effect of ammonia water on the molecular structure of MEA, and its effect on the morphology of ZnO nanostructures were monitored by electron microscopy. Scanning electron microscopy (SEM) results suggest that ZnO nanoparticles with 100 nm in diameter were produced in case of MEA-assisted ultrasonic method. However, as ammonia water was added into the reaction system the morphology of ZnO nanoparticles changed into nanorods, flower-like nanostructures and finally microrods. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies showed that as prepared ZnO nanostructures were single crystalline in nature and grew in different directions resulted in the formation of various structures. The growth mechanism of as prepared ZnO nanostructures was discussed in detail. It was proposed that the addition of ammonia water into the reaction system resulted into the formation of ethylene diamine (EDA) which directed the growth of ZnO. The optical property was studied by photoluminescence (PL) spectroscopy showed only UV emission and no defects mediated visible emission.

9.
ACS Nano ; 16(5): 7848-7860, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35522525

RESUMO

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 µmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.

10.
J Nanosci Nanotechnol ; 11(1): 453-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446475

RESUMO

A simple soft-chemical technique for processing of metal@SnO2 nanocomposites with core-shell morphology is reported. In the present technique metal nanoparticles are prepared by chemical reduction technique followed by deposition of tin dioxide. Thus a core-shell type structure is produced. The phase and morphology has been investigated by X-ray diffraction technique (XRD) and transmission electron microscopy (TEM). As prepared Au@SnO2 and Ag@SnO2 core-shell nanocomposites have shown distinct surface Plasmon band in the UV-visible spectrum at 540 nm and 400 nm respectively. The core-shell morphology is confirmed from the TEM images. XRD patterns have suggested the presence of noble metal and tin dioxide in the Cassiterite form. These metal@SnO2 nanocomposites have been successfully used for the photocatalytic oxidation of acetaldehyde. Our investigations suggest that presence of noble metal core in contact with tin dioxide shell enhances the photocatalytic activity of the material.

11.
J Nanosci Nanotechnol ; 11(1): 647-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446516

RESUMO

In this paper we presented a systematic study on the morphological variation of ZnO nanostructure by varying the pH of precursor solution, reaction time and reaction temperature via cetyl trimethylammonium bromide-assisted hydrothermal method. The phase and structural analysis was carried out by X-ray diffraction, showed the formation of single phase ZnO with hexagonal wurtzite structure in all the specimens. Morphological and structural analysis was carried out by scanning electron microscopy and transmission electron microscopy showed that the shape of ZnO nanorods were greatly influenced by pH of precursor precipitate while size was affected by reaction time as well as temperature. The selected area diffraction pattern showed that the as synthesized ZnO nanorods were single crystalline in nature and preferentially grow along [0001] direction. A plausible growth mechanism of as prepared ZnO nanostructures was discussed in detail. Furthermore, the optical property of as prepared ZnO nanostructures was studied by photoluminescence spectroscopy.

12.
J Colloid Interface Sci ; 587: 252-259, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360898

RESUMO

A versatile hydrogen gas sensor is fabricated using Pd@ZnO core-shell nanoparticles (CSNPs), which were synthesized through a hydrothermal route. Effect of oxidation behavior of Pd core to hydrogen sensing is also investigated for Pd@ZnO CSNPs. Accordingly, Pd@ZnO-2 sensor (core-shell sample was calcined in argon) demonstrates the best performance with respect to Pd@ZnO-1 (core-shell sample was calcined in air) and pure ZnO. It shows a much higher response (R = Ra/Rg = 22) than those of Pd@ZnO-1 (12) and pure ZnO (7) sensors with faster response and recovery times (1.4 and 7.8 min) to 100 ppm hydrogen at 350 °C. In addition, Pd@ZnO-2 sensor owns high selectivity to hydrogen among interfering target gases. Improvement can be attributed to the high content of metallic Pd0 species in CSNPs as calcined in argon. Thereby, a higher Pd metallic content (77%) still remains in Pd@ZnO-2 compared to Pd@ZnO-1 (56%), which in turn modulates the resistance of sensors as exposed to air and target gas, thus enhancing gas sensing activity. High BET surface area of core-shell materials provides plenty of active sites for accelerating the sensing reactions as well.

13.
ACS Appl Mater Interfaces ; 12(52): 58028-58037, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337852

RESUMO

In the present study, we have achieved high-performance photoelectrochemical water splitting (PEC-WS) using GaN nanowires (NWs) coated with tungsten sulfide (WxS1-x) (GaN-NW-WxS1-x) as a photoanode. The measured current density and applied-bias photon-to-current efficiency were 20.38 mA/cm2 and 13.76%, respectively. These values were much higher than those reported previously for photoanodes with any kind of III-nitride nanostructure. The amount of hydrogen gas formed was 1.01 mmol/cm2 from 7 h PEC-WS, which was also much higher than the previously reported values. The drastic improvement in the PEC-WS performance using the GaN-NW-WxS1-x photoanode was attributed to an increase in the number of photogenerated carriers due to the highly crystalline GaN NWs, and acceleration of separation of photogenerated carriers and consequent suppression of charge recombination because of nitrogen-terminated surfaces of NWs, sulfur vacancies in WxS1-x, and type-II band alignment between NW and WxS1-x. The degree of impedance matching, evaluated from Nyquist plots, was considered to analyze charge transfer characteristics at the interface between the GaN-NW-WxS1-x photoanode and 0.5-M H2SO4 electrolyte. Considering the material system and scheme for the PEC-WS, our approach provides an efficient way to improve hydrogen evolution reaction.

14.
Artigo em Inglês | MEDLINE | ID: mdl-19167270

RESUMO

This paper deals with the synthesis of omega-mercaptoundecanoic acid (MUA) capped silver nanoparticles (NPs) with an average size of 15nm by citrate reduction technique and spectroscopic investigation of S-Ag interaction. We have studied the interaction of thiol with silver NPs in aqueous medium by employing UV-vis, Raman, FT-IR, and photoluminescence spectroscopy. The shifting of silver surface plasmon band in the UV-vis spectra shows the stabilization of the silver nanoparticles by MUA. The disappearance of S-H stretching in both the FT-IR and Raman spectra and the shifting of the NMR signals of the protons in close proximity to the metal center supported the existence of the S-Ag interaction in MUA capped silver NPs. The morphology of the thiol protected silver NPs was investigated by transmission electron microscopy (TEM) and was found to be distinct and spherical entities.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química , Enxofre/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Químicos , Tamanho da Partícula , Análise Espectral/métodos
15.
RSC Adv ; 9(27): 15635-15641, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514813

RESUMO

Exploring efficient approaches to design electrodes for proton exchange membrane fuel cells (PEMFCs) is of great advantage to overcome the current limitations of the standard platinum supported carbon (Pt/C) catalyst. Herein, a Pt/C electrode consisting of double catalyst layers (DCL) with low Pt loading of around 0.130 mgPt cm-2 is prepared using spray and electrophoresis (EPD) methods. The DCL electrode demonstrated a higher electrochemical surface area (ECSA-52.5 m2 gPt -1) and smaller internal resistance (133 Ω) as compared to single catalyst layer (SCL) sprayed (37.1 m2 gPt -1 and 184 Ω) or EPD (42.4 m2 gPt -1 and 170 Ω) electrodes. In addition, the corresponding DCL membrane electrode assembly (MEA), which consists of a Pt/C DCL electrode at the anode side and a Pt/C sprayed electrode at the cathode side, also showed improved PEMFC performance as compared to others. Specifically, the DCL MEA generated the highest power density of 4.9 W mgPt -1, whereas, the SCL MEAs only produced 3.1 and 3.8 W mgPt -1, respectively. The superior utilization of the Pt catalysts into the DCL MEA can originate from the enrichment of the triple phase boundary (TPB) presented on the Pt/C DCL electrode, which can strongly promote the adsorbed hydrogen intermediates' removal from the anode side, thus improving the overall PEMFC performance.

16.
ACS Appl Mater Interfaces ; 11(4): 4416-4424, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30644712

RESUMO

Most photodetectors developed to date essentially measure photocurrents induced by the generation and separation of electron-hole pairs in semiconductors during irradiation. Although the above light detection method is well established, highly sensitive, and applicable to a broad range of semiconductor materials, it requires the presence of a stable and direct contact between the semiconductor and the electrode for accurate photocurrent measurements. In turn, this prerequisite necessitates the use of various costly processes for device fabrication (e.g., photolithography and vacuum deposition of semiconductors/metals) and complicates the development of flexible devices. Herein, inspired by the fact that the dielectric properties of certain materials can be changed by light irradiation, we dispersed ZnS/Cu semiconducting particles in poly(vinyl butyral) to prepare a free-standing composite film and formed two layers of Ag nanowire electrodes on both sides of the cured composite to fabricate a photodetector of a completely new type. The developed device exhibited a capacitance very sensitive to irradiation with light of a specific wavelength and additionally featured the advantages of simple structure/operation mechanism, mechanical flexibility, and transparency, not showing any signs of performance deterioration even after severe damage.

17.
ACS Appl Mater Interfaces ; 10(41): 35557-35562, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30088761

RESUMO

For the development of anisotropic thermal interface materials (TIMs), a rod-shaped reactive monomer PNP-6MA is newly designed and successfully synthesized. PNP-6MA reveals a smectic A (SmA) mesophase between crystalline (K) and isotropic (I) phases. PNP-6MA can be oriented under a magnetic field ( B = 2 T), and its macroscopic orientation can be robustly stabilized by in situ polymerization. Even without macroscopic orientations, the fabricated thermal conducting liquid crystal (TCLC) films show the outstanding thermal conductivity of 1.21 W/m K, which is higher than conventional organic materials. The thermal conductivity of uniaxially and macroscopically oriented TCLC films can be 2.5 W/m K along the long axis of mesogenic core. The newly developed TCLC film can be used as a TIM between a high-power light-emitting diode and a heat sink.

18.
Nanoscale Res Lett ; 12(1): 606, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29177596

RESUMO

The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

19.
ACS Appl Mater Interfaces ; 7(18): 9462-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25901904

RESUMO

We successfully prepared Au@ZnO core-shell nanoparticles (CSNPs) by a facile low-temperature solution route and studied its gas-sensing properties. The obtained Au@ZnO CSNPs were carefully characterized by X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, and UV-visible spectroscopy. Mostly spherical-shaped Au@ZnO CSNPs were formed by 10-15 nm Au NPs in the center and by 40-45 nm smooth ZnO shell outside. After the heat-treatment process at 500 °C, the crystallinity of ZnO shell was increased without any significant change in morphology of Au@ZnO CSNPs. The gas-sensing test of Au@ZnO CSNPs was examined at 300 °C for various gases including H2 and compared with pure ZnO NPs. The sensor Au@ZnO CSNPs showed the high sensitivity and selectivity to H2 at 300 °C. The response values of Au@ZnO CSNPs and pure ZnO NPs sensors to 100 ppm of H2 at 300 °C were 103.9 and 12.7, respectively. The improved response of Au@ZnO CSNPs was related to the electronic sensitization of Au NPs due to Schottky barrier formation. The high selectivity of Au@ZnO CSNPs sensor toward H2 gas might be due to the chemical as well as catalytic effect of Au NPs.

20.
ACS Appl Mater Interfaces ; 6(10): 7491-7, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24779525

RESUMO

In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA