Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 625(7993): 148-156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993710

RESUMO

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Memória Imunológica , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Memória Imunológica/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Mutação
2.
Nature ; 614(7948): 521-529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535326

RESUMO

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Evolução Molecular , Imunidade Humoral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções Irruptivas/imunologia , Infecções Irruptivas/virologia , COVID-19/imunologia , COVID-19/virologia , Soroterapia para COVID-19 , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Deriva e Deslocamento Antigênicos/imunologia , Mutação
3.
Nature ; 602(7898): 657-663, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016194

RESUMO

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/classificação , Anticorpos Antivirais/classificação , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células Cultivadas , Convalescença , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Humanos , Soros Imunes/imunologia , Modelos Moleculares , Mutação , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Nature ; 608(7923): 593-602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Epitopos de Linfócito B , Tolerância Imunológica , Mutação , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunização Secundária , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
PLoS Pathog ; 19(12): e1011868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117863

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , COVID-19/genética , Soroterapia para COVID-19 , Anticorpos Neutralizantes
6.
J Proteome Res ; 23(5): 1559-1570, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38603467

RESUMO

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of different variants of concerns with immune evasion that have been prevalent over the past three years. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, have garnered interest in developing neutralizing antibodies due to their smaller size, structural stability, ease of production, high affinity, and low immunogenicity, among other characteristics. In this work, we describe an integrated proteomics platform for the high-throughput screening of nanobodies against different SARS-CoV-2 spike variants. To demonstrate this platform, we immunized a camel with subunit 1 (S1) of the wild-type spike protein and constructed a nanobody phage library. The binding and neutralizing activities of the nanobodies against 72 spike variants were then measured, resulting in the identification of two nanobodies (C-282 and C-39) with broad neutralizing activity against six non-Omicron variants (D614G, Alpha, Beta, Gamma, Delta, Kappa) and five Omicron variants (BA.1-5). Their neutralizing capability was validated using in vitro pseudovirus-based neutralization assays. All these results demonstrate the utility of our proteomics platform to identify new nanobodies with broad neutralizing capability and to develop a treatment for patients with SARS-CoV-2 variant infection in the future.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Camelus , Proteômica , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Proteômica/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Testes de Neutralização
7.
J Med Virol ; 96(1): e29314, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163276

RESUMO

SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Cobaias , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Análise por Conglomerados , Vacinas Combinadas , Anticorpos Antivirais
8.
PLoS Pathog ; 14(2): e1006909, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474489

RESUMO

Insect vitellogenin (Vg) has been considered to be synthesized in the fat body. Here, we found that abundant Vg protein is synthesized in Laodelphax striatellus hemocytes as well. We also determined that only the hemocyte-produced Vg binds to Rice stripe virus (RSV) in vivo. Examination of the subunit composition of L. striatellus Vg (LsVg) revealed that LsVg was processed differently after its expression in different tissues. The LsVg subunit able to bind to RSV exist stably only in hemocytes, while fat body-produced LsVg lacks the RSV-interacting subunit. Nymph and male L. striatellus individuals also synthesize Vg but only in hemocytes, and the proteins co-localize with RSV. We observed that knockdown of LsVg transcripts by RNA interference decreased the RSV titer in the hemolymph, and thus interfered with systemic virus infection. Our results reveal the sex-independent expression and tissue-specific processing of LsVg and also unprecedentedly connect the function of this protein in mediating virus transmission to its particular molecular forms existing in tissues previously known as non-Vg producing.


Assuntos
Proteínas de Insetos/fisiologia , Insetos/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Viroses/transmissão , Vitelogeninas/fisiologia , Animais , Hemípteros/virologia , Insetos/metabolismo , Masculino , Ninfa , Especificidade de Órgãos , Oryza/virologia , Vírus de Plantas/patogenicidade , Tenuivirus/fisiologia , Viroses/metabolismo , Vitelogeninas/metabolismo
9.
Viruses ; 16(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793644

RESUMO

Neutralizing antibodies targeting the spike (S) protein of SARS-CoV-2, elicited either by natural infection or vaccination, are crucial for protection against the virus. Nonetheless, the emergence of viral escape mutants presents ongoing challenges by contributing to breakthrough infections. To define the evolution trajectory of SARS-CoV-2 within the immune population, we co-incubated replication-competent rVSV/SARS-CoV-2/GFP chimeric viruses with sera from COVID-19 convalescents. Our findings revealed that the E484D mutation contributes to increased viral resistant against both convalescent and vaccinated sera, while the L1265R/H1271Y double mutation enhanced viral infectivity in 293T-hACE2 and Vero cells. These findings suggest that under the selective pressure of polyclonal antibodies, SARS-CoV-2 has the potential to accumulate mutations that facilitate either immune evasion or greater infectivity, facilitating its adaption to neutralizing antibody responses. Although the mutations identified in this study currently exhibit low prevalence in the circulating SARS-CoV-2 populations, the continuous and meticulous surveillance of viral mutations remains crucial. Moreover, there is an urgent necessity to develop next-generation antibody therapeutics and vaccines that target diverse, less mutation-prone antigenic sites to ensure more comprehensive and durable immune protection against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Animais , Chlorocebus aethiops , Células Vero , Evasão da Resposta Imune , Células HEK293
10.
MedComm (2020) ; 5(4): e517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525106

RESUMO

Regarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3-△env backbone plasmid HpaI and truncating the C-terminal 21 amino acids of the SARS-CoV-2 spike protein (S), high-titer SARS-CoV-2-Sdel21-AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96-well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS-CoV-2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.

11.
MedComm (2020) ; 5(6): e615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881676

RESUMO

Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.

12.
Emerg Microbes Infect ; 13(1): 2343909, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616729

RESUMO

The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Humanos , Mutação , Animais , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunidade Humoral
13.
Asia Pac J Oncol Nurs ; 10(2): 100171, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632445

RESUMO

Objective: Little is known about the measurement invariance (MI) of resilience instruments in cancer care. This study was designed to examine MI of 10-Item Resilience Scale (RS-SC-10) in Americans and Chinese with cancer using propensity score-based multidimensional item response theory (MIRT) analysis. Methods: A sample of 924 patients were enrolled in the Be Resilient to Cancer trial involving 1 hospital in America and 3 hospitals in China. Data were collected from the RS-SC-10 and Hospital Anxiety and Depression Scale. Propensity score matching and MIRT were performed to evaluate Differential Item Function. Integrated Discrimination Improvement and Net Reclassification Improvement were used to indirectly estimate the MI through incremental prediction ability of MIRT-based score over total score. Results: RS-SC-10 retained 10 items with monotonous thresholds and its original two-factor structure. Nonuniform Differential Item Function was recognized in Item 4 (P â€‹= â€‹0.0011, Δ%ß1 â€‹= â€‹4.15%) and Item 8 (P â€‹= â€‹0.0017, Δ%ß1 â€‹= â€‹5.99%). Net Reclassification Improvement ranged from 9.04% to 35.01%, and Integrated Discrimination Improvement ranged from 8.82% to 20.60%. Conclusions: Although partial MI has been identified between Americans and Chinese, RS-SC-10 remains a critical indicator to emotional distress in cancer care.

14.
Emerg Microbes Infect ; 12(2): 2225638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37313604

RESUMO

From December 2022 to January 2023, SARS-CoV-2 infections caused by BA.5 and BF.7 subvariants of B.1.1.529 (Omicron) spread in China. It is urgently needed to evaluate the protective immune responses in the infected individuals against the current circulating variants to predict the future potential infection waves, such as the BQ.1.1, XBB.1.5, and CH1.1 variants. In this study, we constructed a panel of pseudotyped viruses for SARS-CoV-2 for the past and current circulating variants, including D614G, Delta, BA.1, BA.5, BF.7, BQ.1.1, XBB.1.5 and CH.1.1. We investigated the neutralization sensitivity of these pseudotyped viruses to sera from individuals who had BA.5 or BF.7 breakthrough infections in the infection wave of last December in China. The mean neutralization ID50 against infected variants BA.5 and BF.7 are 533 and 444, respectively. The highest neutralizing antibody level was observed when tested against the D614G strain, with the ID50 of 742, which is about 1.52-folds higher than that against the BA.5/BF.7 variant. The ID50 for BA.1, Delta, and BQ.1.1 pseudotyped viruses were about 2-3 folds lower when compared to BA.5/BF.7. The neutralization activities of these serum samples against XBB.1.5 and CH.1.1 decreased 7.39-folds and 15.25-folds when compared to that against BA.5/BF.7. The immune escape capacity of these two variants might predict new infection waves in future when the neutralizing antibody levels decrease furtherly.


Assuntos
Infecções Irruptivas , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , China/epidemiologia , Anticorpos Antivirais
15.
Anal Chim Acta ; 1260: 341207, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121656

RESUMO

The state-of-the-art SARS-CoV-2 detection methods include qRT-PCR and antibody-based lateral flow assay (LFA) point-of-care tests. Despite the high sensitivity and selectivity, qRT-PCR is slow, expensive and needs well-trained operators. On the other extreme, LFA suffers from low sensitivity albeit its fast detection speed, low detection cost and ease of use. Therefore, the continuing COVID-19 pandemic calls for a SARS-CoV-2 detection method that is rapid, convenient and cost-effective without compromise in sensitivity. Here we provide a proof-of-principle demonstration of an optimized aptamer-based nanointerferometer that enables rapid and amplification-free detection of SARS-CoV-2 spike protein-coated pseudovirus directly from human saliva with the limit of detection (LOD) of about 400 copies per mL. This LOD is on par with that of qRT-PCR, making it 1000 to 100,000-fold more sensitive than commercial LFA tests. Using various combinations of negative selections during the screens for the aptamer targeting the receptor binding domain of the spike protein of SARS-CoV-2, we isolated two aptamers that can distinguish the Omicron and Delta variants. Integrating these two aptamers with LFA strips or the nanointerferometer sensors allows both detection and differentiation of the Omicron and Delta variants which has the potential to realize rapid triage of patients infected different SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Oligonucleotídeos
16.
Emerg Microbes Infect ; 12(2): e2261566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37727107

RESUMO

ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.


Assuntos
COVID-19 , Estomatite Vesicular , Animais , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Reprodutibilidade dos Testes , Pseudotipagem Viral , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Vírus da Estomatite Vesicular Indiana/genética , Testes de Neutralização/métodos
17.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896529

RESUMO

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais/genética , COVID-19/genética , Análise por Conglomerados , Cobaias , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
18.
Emerg Microbes Infect ; 11(1): 182-194, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34856891

RESUMO

The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Catepsina L/metabolismo , Furina/metabolismo , SARS-CoV-2/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Animais , Catepsina L/genética , Fusão Celular , Quirópteros , Furina/genética , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vermilingua
19.
Emerg Microbes Infect ; 11(1): 1024-1036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35293847

RESUMO

SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Fusão Celular , Humanos , Camundongos , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Tropismo Viral
20.
Cell Rep ; 41(12): 111845, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36493787

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages have escaped most receptor-binding domain (RBD)-targeting therapeutic neutralizing antibodies (NAbs), which proves that previous NAb drug screening strategies are deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd-immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following these criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS-CoV-2-vaccinated SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection, especially for individuals who are immunocompromised or with high-risk comorbidities.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , Terapia Combinada de Anticorpos , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA