Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 28(49): 16989-7000, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23171434

RESUMO

Nanoparticles are generally considered excellent candidates for targeted drug delivery. However, ion leakage and cytotoxicity induced by nanoparticle permeation is a potential problem in such drug delivery schemes because of the toxic effect of many ions. In this study, we have carried out a series of coarse-grained molecular dynamics simulations to investigate the water penetration, ion transport, and lipid molecule flip-flop in a protein-free phospholipid bilayer membrane during nanoparticle permeation. The effect of ion concentration gradient, pressure differential across the membrane, nanoparticle size, and permeation velocity have been examined in this work. Some conclusions from our studies include (1) The number of water molecules in the interior of the membrane during the nanoparticle permeation increases with the nanoparticle size and the pressure differential across the membrane but is unaffected by the nanoparticle permeation velocity or the ion concentration gradient. (2) Ion transport is sensitive to the size of nanoparticle as well as the ion concentration gradient between two sides of the membrane; no anion/cation selectivity is observed for small nanoparticle permeation, while anions are preferentially translocated through the membrane when the size of nanoparticle is large enough. (3) Incidences of lipid molecule flip-flop increases with the size of nanoparticle and ion concentration gradient and decreases with the pressure differential and the nanoparticle permeation velocity.


Assuntos
Portadores de Fármacos/química , Bicamadas Lipídicas/química , Nanopartículas/química , Fosfolipídeos/química , Água/química , Transporte de Íons , Cinética , Simulação de Dinâmica Molecular , Tamanho da Partícula , Permeabilidade , Termodinâmica
2.
J Phys Chem B ; 110(17): 8566-9, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640407

RESUMO

ZnO nanoneedle arrays have been grown on a large scale with a chemical vapor deposition method at 680 degrees C. Zn powder and O(2) gas are employed as source materials, and catalyst-free Si plates are used as substrates. Energy-dispersive X-ray and X-ray diffraction analyses show that the nanoneedles are almost pure ZnO and preferentially aligned in the c-axis direction of the wurtzite structure. The growth mechanism of ZnO nanoneedle arrays is discussed with the thermodynamic theory and concluded to be the result of the co-effect of the surface tension and diffusion. Photoluminescence spectrum of the as-grown products shows a strong emission band centering at about 484 nm, which originates from oxygen vacancies. Field-emission examination exhibits that the ZnO nanoneedle arrays have a turn-on voltage at about 5.3 V/microm.

3.
J Phys Chem B ; 109(39): 18352-5, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16853362

RESUMO

At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

4.
Nanoscale Res Lett ; 8(1): 50, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347429

RESUMO

Tungsten trioxide (WO3) is always oxygen-deficient or non-stoichiometric under atmospheric conditions. Positively charged oxygen vacancies prefer to drift as well as electrons when the electric field is strong enough, which will alter the distribution of oxygen vacancies and then endow WO3 with memristive properties. In Au/WO3 nanowire/Au sandwich structures with two ohmic contacts, the axial distribution of oxygen vacancies and then the electrical transport properties can be more easily modulated by bias voltage. The threshold electric field for oxygen vacancy drifting in single-crystal hexagonal WO3 nanowire is about 106 V/m, one order of magnitude less than that in its granular film. At elevated temperatures, the oxygen vacancy drifts and then the memristive effect can be enhanced remarkably. When the two metallic contacts are asymmetric, the WO3 nanowire devices even demonstrate good rectifying characteristic at elevated temperatures. Based on the drift of oxygen vacancies, nanoelectronic devices such as memristor, rectifier, and two-terminal resistive random access memory can be fabricated on individual WO3 nanowires.

5.
Nanoscale Res Lett ; 4(6): 538-543, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-20596289

RESUMO

Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs) were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA