RESUMO
Mechanisms for human memory T cell differentiation and maintenance have largely been inferred from studies of peripheral blood, though the majority of T cells are found in lymphoid and mucosal sites. We present here a multidimensional, quantitative analysis of human T cell compartmentalization and maintenance over six decades of life in blood, lymphoid, and mucosal tissues obtained from 56 individual organ donors. Our results reveal that the distribution and tissue residence of naive, central, and effector memory, and terminal effector subsets is contingent on both their differentiation state and tissue localization. Moreover, T cell homeostasis driven by cytokine or TCR-mediated signals is different in CD4+ or CD8+ T cell lineages, varies with their differentiation stage and tissue localization, and cannot be inferred from blood. Our data provide an unprecedented spatial and temporal map of human T cell compartmentalization and maintenance, supporting distinct pathways for human T cell fate determination and homeostasis.
Assuntos
Envelhecimento/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Antígenos CD28/metabolismo , Diferenciação Celular , Criança , Pré-Escolar , Humanos , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Pessoa de Meia-Idade , Mucosa/citologia , Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/química , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Doadores de Tecidos , Adulto JovemRESUMO
Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.
Assuntos
Arginase/metabolismo , Linfócitos/fisiologia , Pneumonia/imunologia , Animais , Arginase/genética , Proliferação de Células/genética , Células Cultivadas , Citocinas/metabolismo , Glicólise/genética , Humanos , Imunidade Inata , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Poliaminas/metabolismo , Células Th2/imunologiaRESUMO
Innate lymphoid cells (ILC) play critical roles in regulating immunity, inflammation, and tissue homeostasis in mice. However, limited access to non-diseased human tissues has hindered efforts to profile anatomically-distinct ILCs in humans. Through flow cytometric and transcriptional analyses of lymphoid, mucosal, and metabolic tissues from previously healthy human organ donors, here we have provided a map of human ILC heterogeneity across multiple anatomical sites. In contrast to mice, human ILCs are less strictly compartmentalized and tissue localization selectively impacts ILC distribution in a subset-dependent manner. Tissue-specific distinctions are particularly apparent for ILC1 populations, whose distribution was markedly altered in obesity or aging. Furthermore, the degree of ILC1 population heterogeneity differed substantially in lymphoid versus mucosal sites. Together, these analyses comprise a comprehensive characterization of the spatial and temporal dynamics regulating the anatomical distribution, subset heterogeneity, and functional potential of ILCs in non-diseased human tissues.
Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Especificidade de Órgãos/imunologia , Transcriptoma/imunologia , Adolescente , Adulto , Idoso , Envelhecimento/genética , Animais , Criança , Pré-Escolar , Feminino , Heterogeneidade Genética , Humanos , Imunidade Inata/genética , Lactente , Recém-Nascido , Linfócitos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Transcriptoma/genética , Adulto JovemRESUMO
Knowledge of human T cells derives chiefly from studies of peripheral blood, whereas their distribution and function in tissues remains largely unknown. Here, we present a unique analysis of human T cells in lymphoid and mucosal tissues obtained from individual organ donors, revealing tissue-intrinsic compartmentalization of naive, effector, and memory subsets conserved between diverse individuals. Effector memory CD4(+) T cells producing IL-2 predominated in mucosal tissues and accumulated as central memory subsets in lymphoid tissue, whereas CD8(+) T cells were maintained as naive subsets in lymphoid tissues and IFN-γ-producing effector memory CD8(+) T cells in mucosal sites. The T cell activation marker CD69 was constitutively expressed by memory T cells in all tissues, distinguishing them from circulating subsets, with mucosal memory T cells exhibiting additional distinct phenotypic and functional properties. Our results provide an assessment of human T cell compartmentalization as a new baseline for understanding human adaptive immunity.
Assuntos
Memória Imunológica/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Fatores Etários , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Imunofenotipagem , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Especificidade de Órgãos/imunologia , Subpopulações de Linfócitos T/metabolismo , Doadores de Tecidos , Adulto JovemRESUMO
The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the ß2-adrenergic receptor (ß2AR) and colocalize with adrenergic neurons in the intestine. ß2AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, ß2AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the ß2AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation.
Assuntos
Imunidade Adaptativa , Neurônios Adrenérgicos/imunologia , Imunidade Inata , Linfócitos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Humanos , Inflamação/imunologia , Intestinos/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/imunologia , Receptores Adrenérgicos beta 2/genética , Transdução de SinaisRESUMO
Memory T cells constitute the most abundant lymphocyte population in the body for the majority of a person's lifetime; however, our understanding of memory T cell generation, function and maintenance mainly derives from mouse studies, which cannot recapitulate the exposure to multiple pathogens that occurs over many decades in humans. In this Review, we discuss studies focused on human memory T cells that reveal key properties of these cells, including subset heterogeneity and diverse tissue residence in multiple mucosal and lymphoid tissue sites. We also review how the function and the adaptability of human memory T cells depend on spatial and temporal compartmentalization.
Assuntos
Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Antígenos , Reações Cruzadas , Homeostase , Humanos , Imunidade nas Mucosas , Tecido Linfoide/imunologia , Camundongos , Microbiota/imunologia , Modelos Imunológicos , Vacinas/imunologiaRESUMO
HIV targets CD4 T cells, which are required for the induction of high-affinity antibody responses and the formation of long-lived B cell memory. The depletion of antigen-specific CD4 T cells during HIV infection is therefore believed to impede the development of protective B cell immunity. Although several different HIV-related B cell dysfunctions have been described, the role of CD4 T follicular helper (TFH) cells in HIV infection remains unknown. Here, we assessed HIV-specific TFH responses in the lymph nodes of treatment-naive and antiretroviral-treated HIV-infected individuals. Strikingly, both the bulk TFH and HIV-specific TFH cell populations were significantly expanded in chronic HIV infection and were highly associated with viremia. In particular, GAG-specific TFH cells were detected at significantly higher levels in the lymph nodes compared with those of GP120-specific TFH cells and showed preferential secretion of the helper cytokine IL-21. In addition, TFH cell expansion was associated with an increase of germinal center B cells and plasma cells as well as IgG1 hypersecretion. Thus, our study suggests that high levels of HIV viremia drive the expansion of TFH cells, which in turn leads to perturbations of B cell differentiation, resulting in dysregulated antibody production.