Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935904

RESUMO

Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.


Assuntos
Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/genética , Desenvolvimento Embrionário/genética , Mitose/genética , Aneuploidia , Animais , Centrômero/genética , Segregação de Cromossomos/genética , Cromossomos/genética , Genoma/genética , Herança Materna/genética , Meiose/genética , Camundongos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Zigoto/crescimento & desenvolvimento , Coesinas
2.
Reproduction ; 157(3): 305-316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30620721

RESUMO

Eighteen histone deacetylases exist in mammals. The class 1 histone deacetylases HDAC1 and HDAC2 are important for oogenesis and fertility in mice, likely via their effects on histones. The reproductive function of HDAC8, another class 1 enzyme, has not been explored. One key target of HDAC8 is the SMC3 subunit of cohesin, an essential complex mediating sister chromatid cohesion and chromosome segregation. In current models, HDAC8 activity is required for SMC3 recycling, but this function should be dispensable in oocytes since cohesion is established during pre-meiotic S phase and maintained until meiotic resumption during ovulation. Whether other oocyte-specific HDAC8-mediated deacetylation events are required for oogenesis and female fertility is unknown. We used two Cre drivers to remove Hdac8 at specific stages of oocyte development to address whether HDAC8 is required for female fertility in mice. When HDAC8 was knocked out in oocytes in primary and later stage follicles (Zp3-Cre), oogenesis and folliculogenesis appeared normal and mice were fertile. However, females were subfertile when HDAC8 was knocked out prior to pre-meiotic S phase and cohesion establishment (Vasa-Cre). This subfertility was independent of chromosome segregation errors during meiosis but rather appeared to be the result of defects in oogenesis that resulted in smaller fully grown oocytes with a reduced ability to resume meiosis. In all cases, we did not observe compensatory changes in HDAC1, HDAC2 and HDAC3 levels. Thus, although oocyte-specific expression of HDAC8 is not essential for mouse oogenesis after meiotic S phase, it contributes to optimal fertility. We infer that oocyte-specific expression of the deacetylase HDAC8 is required early in oogenesis for optimal fertility.


Assuntos
Fertilidade , Histona Desacetilases/fisiologia , Meiose , Oócitos/fisiologia , Oogênese , Animais , Segregação de Cromossomos , Feminino , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Ovulação
3.
J Mol Biol ; 436(1): 168372, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979908

RESUMO

Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.


Assuntos
Proteína BRCA1 , Neoplasias Experimentais , Animais , Humanos , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética
4.
Nat Commun ; 14(1): 7714, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001070

RESUMO

Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.


Assuntos
Proteína BRCA1 , Genes BRCA2 , Camundongos , Animais , Humanos , Proteína BRCA1/genética , Mutação , Mutações Sintéticas Letais , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA