Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
2.
Immunity ; 43(1): 80-91, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200012

RESUMO

The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.


Assuntos
Cisteína Endopeptidases/biossíntese , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Macrófagos/metabolismo , Receptores de Estrogênio/genética , Receptor 4 Toll-Like/imunologia , Acetilação , Animais , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cisteína Endopeptidases/genética , Ativação Enzimática/genética , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Choque Séptico/imunologia , Transdução de Sinais , Sirtuína 1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação , Receptor ERRalfa Relacionado ao Estrogênio
3.
Nat Immunol ; 12(8): 742-51, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725320

RESUMO

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase-dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.


Assuntos
NF-kappa B/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Sepse/imunologia , Receptores Toll-Like/imunologia , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Imunoprecipitação da Cromatina , Feminino , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/imunologia , Ubiquitinação/imunologia
4.
Gynecol Obstet Invest ; 87(1): 79-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35500567

RESUMO

OBJECTIVE: In the present study, we attempted to identify the effects of fenofibrate on human cervical cancer cells. METHODS: The cytotoxicity of fenofibrate in cervical cancer cells was determined by Cell Counting Kit-8. Immunoblotting assay was used to determine the protein expression of caspase-3, poly ADP-ribose polymerase cleavage, B-cell lymphoma 2 family protein expression, microtubule-associated protein 1A/1B-light chain 3 (LC3), as well as cyclins and cyclin-dependent kinases. Immunofluorescence imaging was used to determine the expression of cleaved caspase-3 and LC3. Flow cytometry was used to determine cell cycle and apoptosis. RESULTS: We first showed that fenofibrate treatment reduced cell viability in HeLa cervical cancer cells in a dose-dependent manner at 24 h and 48 h. Importantly, fenofibrate-induced cell death was mediated through cell cycle arrest in the G0-G1 phase and caspase-dependent apoptosis. Moreover, fenofibrate also induced autophagy activation in a dose-dependent manner and pharmacological inhibition of autophagy led to increase of sub-G1 phase and caspase-dependent cell death in HeLa cells. CONCLUSION: In conclusion, these data demonstrated that fenofibrate initially induced cell cycle arrest, followed by caspase-3-dependent cell death in cervical cancer HeLa cells. However, fenofibrate also induced autophagy activation, which is closely related to the survival of diverse cancer cells, thus reducing the anticancer effects of fenofibrate. Therefore, the combination of an autophagy inhibitor and fenofibrate might have the potential to become a new therapeutic strategy for cervical cancer.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Fenofibrato , Neoplasias do Colo do Útero , Caspase 3/metabolismo , Feminino , Fenofibrato/farmacologia , Células HeLa , Humanos , Neoplasias do Colo do Útero/patologia
5.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362370

RESUMO

Sirtuin 1 (SIRT1) regulates cellular processes by deacetylating non-histone targets, including transcription factors and intracellular signalling mediators; thus, its abnormal activation is closely linked to the pathophysiology of several diseases. However, its function in Toxoplasma gondii infection is unclear. We found that SIRT1 contributes to autophagy activation via the AMP-activated protein kinase (AMPK) and PI3K/AKT signalling pathways, promoting anti-Toxoplasma responses. Myeloid-specific Sirt1-/- mice exhibited an increased cyst burden in brain tissue compared to wild-type mice following infection with the avirulent ME49 strain. Consistently, the intracellular survival of T. gondii was markedly increased in Sirt1-deficient bone-marrow-derived macrophages (BMDMs). In contrast, the activation of SIRT1 by resveratrol resulted in not only the induction of autophagy but also a significantly increased anti-Toxoplasma effect. Notably, SIRT1 regulates the FoxO-autophagy axis in several human diseases. Importantly, the T. gondii-induced phosphorylation, acetylation, and cytosolic translocation of FoxO1 was enhanced in Sirt1-deficient BMDMs and the pharmacological inhibition of PI3K/AKT signalling reduced the cytosolic translocation of FoxO1 in BMDMs infected with T. gondii. Further, the CaMKK2-dependent AMPK signalling pathway is responsible for the effect of SIRT1 on the FoxO3a-autophagy axis and for its anti-Toxoplasma activity. Collectively, our findings reveal a previously unappreciated role for SIRT1 in Toxoplasma infection.


Assuntos
Toxoplasma , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/genética , Toxoplasma/metabolismo , Fatores de Transcrição Forkhead/metabolismo
6.
J Cell Mol Med ; 25(19): 9460-9472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464509

RESUMO

Fas-associated factor 1 (FAF1) has gained a reputation as a member of the FAS death-inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE-19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii-induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii-induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1-dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Fator Regulador 3 de Interferon/metabolismo , Toxoplasma/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Células Cultivadas , Imunofluorescência , Proteína Forkhead Box O1/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
7.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630319

RESUMO

The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1ß and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.


Assuntos
Inflamassomos/metabolismo , Inflamassomos/fisiologia , Mitofagia/fisiologia , Animais , Caspase 1/metabolismo , Doença , Humanos , Imunidade/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Piroptose/fisiologia
8.
Korean J Parasitol ; 58(3): 237-247, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32615737

RESUMO

Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.


Assuntos
Células Dendríticas/metabolismo , Interações Hospedeiro-Parasita , NADPH Oxidase 4/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Toxoplasma/fisiologia , Animais , Linhagem Celular , Regulação para Baixo , Humanos , Camundongos
9.
Korean J Parasitol ; 58(1): 7-14, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32145722

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu- lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec- tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4- HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres- sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1- mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.


Assuntos
Autofagia , Benzaldeídos/farmacologia , Macrófagos/fisiologia , Sirtuína 1 , Toxoplasma/crescimento & desenvolvimento , Animais , Células Cultivadas , Depressão Química , Camundongos Endogâmicos C57BL
10.
Cell Physiol Biochem ; 52(5): 1117-1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990583

RESUMO

BACKGROUND/AIMS: New therapeutic strategies and the development of treatments against inflammatory bowel disease (IBD) require the initiation of immune tolerance and inhibition of excessive inflammation. Resveratrol, a polyphenolic compound, is a powerful immunosuppressor, but it can lead to apoptotic death of normal cells at high concentrations. When we induced a structural modification of resveratrol by gamma irradiation, we were able to investigate the potential tolerogenic and anti-inflammatory effect of a new radiolysis product (named γ-Res) during dendritic cell (DC) activation/differentiation. METHODS: The potential tolerogenic and anti-inflammatory effect of γ-Res were investigated by cytokine secretion, surface molecule expression, antigen uptake ability, antigen presenting ability, signaling pathway, and mixed lymphocyte reaction (MLR) assay using enzyme-linked immunosorbent assay (ELISA), western blot and flow cytometry. RESULTS: LPS-activated DCs treated with γ-Res exhibited alterations in their mature and functional statuses including a strongly inhibited cytokine production, surface molecule expression, antigen-presenting ability, and activated DC-induced T cell proliferation/activation. In addition, the DCs generated by the γ-Res treatment during DC differentiation induced a decreased surface molecule expression and increased IL-10 production without altering the levels of TNF-α and IL-12p70, thereby promoting the inhibition of T cell proliferation/activation and the induction of regulatory T cells via interaction with DCs in vitro. Furthermore, in the in vivo DSS-induced colitis model, γ-Res treatment conferred protective immunity with a decrease in IFN-γ+CD4+ and IL-17A+CD4+ T cells and imparted protection by reducing the disease activity and histological disease score and increasing the survival rate in dextran sulfate sodium (DSS)-induced colitis in mice. CONCLUSION: Thus, our results suggest that γ-Res may be an excellent candidate for use in IBD treatment.


Assuntos
Anti-Inflamatórios não Esteroides , Diferenciação Celular/efeitos dos fármacos , Colite Ulcerativa , Células Dendríticas/imunologia , Raios gama , Tolerância Imunológica/efeitos dos fármacos , Resveratrol , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Células Dendríticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Resveratrol/química , Resveratrol/farmacologia
11.
Korean J Parasitol ; 57(2): 83-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31104400

RESUMO

Based on the reactive oxygen species (ROS) regulatory properties of diphenyleneiodonium (DPI), we investigated the effects of DPI on host-infected T. gondii proliferation and determined specific concentration that inhibit the intracellular parasite growth but without severe toxic effect on human retinal pigment epithelial (ARPE-19) cells. As a result, it is observed that host superoxide, mitochondria superoxide and H2O2 levels can be increased by DPI, significantly, followed by suppression of T. gondii infection and proliferation. The involvement of ROS in anti-parasitic effect of DPI was confirmed by finding that DPI effect on T. gondii can be reversed by ROS scavengers, N-acetyl-L-cysteine and ascorbic acid. These results suggest that, in ARPE-19 cell, DPI can enhance host ROS generation to prevent T. gondii growth. Our study showed DPI is capable of suppressing T. gondii growth in host cells while minimizing the un-favorite side-effect to host cell. These results imply that DPI as a promising candidate material for novel drug development that can ameliorate toxoplasmosis based on ROS regulation.


Assuntos
Antiprotozoários/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Fatores Imunológicos/farmacologia , Oniocompostos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Toxoplasma/crescimento & desenvolvimento , Antiprotozoários/toxicidade , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Fatores Imunológicos/toxicidade , Oniocompostos/toxicidade , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/parasitologia , Toxoplasma/efeitos dos fármacos
12.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404221

RESUMO

5'-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Interações Hospedeiro-Patógeno , Infecções/etiologia , Infecções/metabolismo , Imunidade Adaptativa , Animais , Resistência à Doença , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Transdução de Sinais
13.
J Immunol ; 194(11): 5355-65, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917095

RESUMO

MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG.


Assuntos
Autofagia/genética , Macrófagos/imunologia , MicroRNAs/fisiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Linhagem Celular , Regulação da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like , Tuberculose Pulmonar/genética
14.
Korean J Parasitol ; 55(6): 613-622, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29320816

RESUMO

IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.


Assuntos
Interleucina-12/metabolismo , Interleucina-23/metabolismo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Toxoplasma/imunologia , Células Cultivadas , Humanos , Células Jurkat , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/fisiologia , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
15.
Korean J Parasitol ; 55(1): 95-98, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28285514

RESUMO

Fasciola hepatica is a trematode that causes zoonosis, mainly in cattle and sheep, and occasionally in humans. Few recent studies have determined the infection status of this fluke in Korea. In August 2015, we collected 402 samples of freshwater snails at Hoenggye-ri (upper stream) and Suha-ri (lower stream) of Song-cheon (stream) in Daegwalnyeong-myeon, Pyeongchang-gun in Gangwon-do (Province) near many large cattle or sheep farms. F. hepatica infection was determined using PCR on the nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 402 samples, F. hepatica 1TS-2 marker was detected in 6 freshwater snails; thus, the overall prevalence in freshwater snails was 1.5%. The prevalence varied between collection areas, ranging from 0.0% at Hoenggye-ri to 2.9% at Suha-ri. However, F. gigantica ITS-2 was not detected in the 6 F. hepatica-positive samples by PCR. The nucleotide sequences of the 6 F. hepatica ITS-2 PCR-positive samples were 99.4% identical to the F. hepatica ITS-2 sequences in GenBank, whereas they were 98.4% similar to F. gigantica ITS-2 sequences. These results indicated that the prevalence of F. hepatica in snail intermediate hosts was 1.5% in Gangwon-do, Korea; however the prevalence varied between collection areas. These results may help us to understand F. hepatica infection status in natural environments.


Assuntos
Fasciola hepatica/isolamento & purificação , Água Doce , Caramujos/parasitologia , Animais , Sequência de Bases , Bovinos , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fasciola hepatica/genética , Humanos , Coreia (Geográfico)/epidemiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prevalência , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Infect Immun ; 84(1): 339-50, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26553469

RESUMO

The intracellular parasite Toxoplasma gondii has unique dense granule antigens (GRAs) that are crucial for host infection. Emerging evidence suggests that GRA7 of T. gondii is a promising serodiagnostic marker and an effective toxoplasmosis vaccine candidate; however, little is known about the intracellular regulatory mechanisms involved in the GRA7-induced host responses. Here we show that GRA7-induced MyD88 signaling through the activation of TRAF6 and production of reactive oxygen species (ROS) is required for the induction of NF-κB-mediated proinflammatory responses by macrophages. GRA7 stimulation resulted in the rapid activation of mitogen-activated protein kinases and an early burst of ROS in macrophages in a MyD88-dependent manner. GRA7 induced a physical association between GRA7 and TRAF6 via MyD88. Remarkably, the C terminus of GRA7 (GRA7-V) was sufficient for interaction with and ubiquitination of the RING domain of TRAF6, which is capable of inflammatory cytokine production. Interestingly, the generation of ROS and TRAF6 activation are mutually dependent on GRA7/MyD88-mediated signaling in macrophages. Furthermore, mice immunized with GRA7-V showed markedly increased Th1 immune responses and protective efficacy against T. gondii infection. Collectively, these results provide novel insight into the crucial role of GRA7-TRAF6 signaling in innate immune responses.


Assuntos
Antígenos de Protozoários/metabolismo , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Proteínas de Protozoários/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Toxoplasma/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Citocinas/biossíntese , Ativação Enzimática , Células HEK293 , Humanos , Imunidade Inata/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , NF-kappa B/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Ubiquitinação
17.
Mol Ther ; 22(7): 1254-1265, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682171

RESUMO

Interleukin-6 (IL-6) is a multifunctional cytokine that regulates immune responses for host defense and tumorigenic process. Upregulation of IL-6 is known to constitutively phosphorylate signal transducer and activator of transcription 3 (STAT3), leading to activation of multiple oncogene pathways and inflammatory cascade. Here, we present the development of a high-affinity protein binder, termed repebody, which effectively suppresses non-small cell lung cancer in vivo by blocking the IL-6/STAT3 signaling. We selected a repebody that prevents human IL-6 (hIL-6) from binding to its receptor by a competitive immunoassay, and modulated its binding affinity for hIL-6 up to a picomolar range by a modular approach that mimics the combinatorial assembly of diverse modules to form antigen-specific receptors in nature. The resulting repebody was highly specific for hIL-6, effectively inhibiting the STAT3 phosphorylation in a dose- and binding affinity-response manner in vitro. The repebody was shown to have a remarkable suppression effect on the growth of tumors and STAT3 phosphorylation in xenograft mice with non-small cell lung cancer by blocking the hIL-6/STAT3 signaling. Structural analysis of the repebody and IL-6 complex revealed that the repebody binds the site 2a of hIL-6, overlapping a number of epitope residues at site 2a with gp130, and consequently causes a steric hindrance to the formation of IL-6/IL-6Rα complex. Our results suggest that high-affinity repebody targeting the IL-6/STAT3 pathway can be developed as therapeutics for non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Korean J Parasitol ; 53(4): 371-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26323834

RESUMO

Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.


Assuntos
Colo do Útero/parasitologia , Células Epiteliais/enzimologia , Sistema de Sinalização das MAP Quinases , Mucosa/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vaginite por Trichomonas/enzimologia , Trichomonas vaginalis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Colo do Útero/enzimologia , Colo do Útero/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Feminino , Humanos , Mucosa/metabolismo , Mucosa/parasitologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vaginite por Trichomonas/genética , Vaginite por Trichomonas/metabolismo , Vaginite por Trichomonas/parasitologia , Fator de Necrose Tumoral alfa/genética
19.
Immune Netw ; 24(1): e4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38455468

RESUMO

TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

20.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474770

RESUMO

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Assuntos
Flavonoides , Sepse , Choque Séptico , Camundongos , Animais , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Choque Séptico/tratamento farmacológico , Endotoxinas , Citocinas/metabolismo , Sepse/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA